Температура замерзания соленой воды таблица

Температура замерзания соленой воды таблица

Морско́й лёд — лёд, образовавшийся в море (океане) при замерзании воды. Так как морская вода солёная, замерзание воды с солёностью, равной средней солёности Мирового океана, происходит при температуре около −1,8 °C.

Оценка количества (густоты) морского льда даётся в баллах — от 0 (чистая вода) до 10 (сплошной лёд).

Содержание

Свойства [ править | править код ]

Важнейшие свойства морского льда — пористость и солёность, определяющие его плотность (от 0,85 до 0,94 г/см³). Из-за малой плотности льда льдины возвышаются над поверхностью воды на 1 /7— 1 /10 их толщины. Таяние морского льда начинается при температуре выше −2,3 °C. По сравнению с пресноводным он труднее поддаётся раздроблению на части и более эластичен.

Солёность [ править | править код ]

Солёность морского льда зависит от солёности воды, скорости льдообразования, интенсивности перемешивания воды и его возраста [1] . В среднем солёность льда в 4 раза ниже солёности образовавшей его воды, колеблясь от 0 до 15 промилле (в среднем 3—8 ‰) [2] .

Плотность [ править | править код ]

Морской лёд является сложным физическим телом, состоящим из кристаллов пресного льда, рассола, пузырьков воздуха и различных примесей. Соотношение составляющих зависит от условий льдообразования и последующих ледовых процессов и влияет на среднюю плотность льда. Так, наличие пузырьков воздуха (пористость [3] ) значительно уменьшает плотность льда. Солёность льда оказывает на плотность меньшее воздействие, чем пористость. При солёности льда 2 промилле и нулевой пористости плотность льда составляет 922 килограмма на кубический метр, а при пористости 6 процентов понижается до 867. В то же время при нулевой пористости увеличение солёности с 2 до 6 промилле приводит к увеличению плотности льда только с 922 до 928 килограммов на кубический метр [4] .

Теплофизические свойства [ править | править код ]

Средняя удельная теплопроводность морского льда примерно в пять раз выше, чем у воды, и в восемь раз выше, чем у снега, и составляет около 2,1 Вт/м·градус, но к нижней и верхней поверхностям льда может уменьшаться из-за увеличения солёности и роста количества пор.

Теплоёмкость морского льда приближается к теплоёмкости пресного льда с понижением температуры льда, когда солевой рассол вымерзает. С ростом солёности, а следовательно, увеличением массы рассола, теплоёмкость морского льда всё больше зависит от теплоты фазовых преобразований, то есть изменений температуры. Эффективная теплоёмкость льда увеличивается с повышением его солёности и температуры.

Теплота плавления (и кристаллизации) морского льда колеблется от 150 до 397 кДж/кг в зависимости от температуры и солёности (с повышением температуры или солёности теплота плавления понижается).

Оптические свойства [ править | править код ]

Чистый лёд прозрачен для световых лучей. Включения (воздушные пузырьки, солевой рассол, пыль) рассеивают лучи, значительно уменьшая прозрачность льда.

Оттенки цвета морского льда в больших массивах варьируют от белого до коричневого.

Белый лёд образуется из снега и имеет много пузырьков воздуха или ячеек с рассолом.

Молодой морской лёд зернистой структуры со значительным количеством воздуха и рассола часто имеет зелёный цвет.

Многолетние торосистые льды, из которых выдавлены примеси, и молодые льды, которые замерзали в спокойных условиях, часто имеют голубой или синий цвет. Голубым также бывает глетчерный лёд и айсберги. В голубом льду чётко видна игольчатая структура кристаллов.

Коричневый или желтоватый лёд имеет речной или прибрежный генезис, в нём имеются примеси глины или гуминовых кислот.

Начальные виды льда (ледяное сало, шуга) имеют тёмно-серый цвет, иногда со стальным оттенком. С увеличением толщины льда его цвет становится светлее, постепенно переходя в белый. При таянии тонкие льдинки снова становятся серыми.

В случае, если лёд содержит большое количество минеральных или органических примесей (планктон, эоловые взвеси, бактерии), его цвет может меняться на красный, розовый, жёлтый, вплоть до чёрного.

В связи со свойством льда задерживать длинноволновую радиацию, он способен создавать парниковый эффект, что приводит к нагреванию находящейся под ним воды.

Механические свойства [ править | править код ]

Под механическими свойствами льда понимают его способность противостоять деформациям.

Читайте также:  Как перейти к параметрам компьютера

Типичные виды деформации льда: растяжение, сжатие, сдвиг, изгиб. Выделяют три стадии деформации льда: упругая, упруго-пластическая, стадия разрушения. Учёт механических свойств льда важен при определении оптимального курса ледоколов, а также при размещении на льдинах грузов, полярных станций, при расчёте прочности корпуса судна.

Условия образования [ править | править код ]

При образовании морского льда между целиком пресными кристаллами льда оказываются мелкие капли солёной воды, которые постепенно стекают вниз. Температура замерзания и температура наибольшей плотности морской воды зависит от её солёности. Морская вода, солёность которой ниже 24,695 промилле (так называемая солоноватая вода), при охлаждении сначала достигает наибольшей плотности, как и пресная вода, а при дальнейшем охлаждении и отсутствии перемешивания быстро достигает температуры замерзания. Если солёность воды выше 24,695 промилле (солёная вода), она охлаждается до температуры замерзания при постоянном увеличении плотности с непрерывным перемешиванием (обменом между верхними холодными и нижними более тёплыми слоями воды), что не создаёт условий для быстрого выхолаживания и замерзания воды, то есть при одинаковых погодных условиях солёная океаническая вода замерзает позже солоноватой.

Классификации [ править | править код ]

Морской лёд по своему местоположению и подвижности разделяется на три типа:

По стадиям развития льда выделяют несколько так называемых начальных видов льда (в порядке времени образования):

  • ледяные иглы,
  • ледяное сало,
  • снежура,
  • шуга,
  • внутриводный (в том числе донный или якорный), образующийся на некоторой глубине и находящихся в воде предметах в условиях турбулентного перемешивания воды.

Дальнейшие по времени образования виды льда — ниласовые льды:

  • нилас, образующийся при спокойной поверхности моря из сала и снежуры (тёмный нилас до 5 см толщиной, светлый нилас до 10 см толщиной) — тонкая эластичная корка льда, легко прогибающаяся на воде или зыби и образующая при сжатии зубчатые наслоения;
  • склянки, образующиеся в распреснённой воде при спокойном море (в основном, в заливах, около устьев рек) — хрупкая блестящая корка льда, которая легко ломается под действием волны и ветра;
  • блинчатый лёд, образующийся при слабом волнении из ледяного сала, снежуры или шуги или вследствие разлома в результате волнения склянки, ниласа или так называемого молодого льда. Представляет собой пластины льда округлой формы от 30 см до 3 м в диаметре и толщиной 10—15 см с приподнятыми краями из-за обтирания и ударов льдин.

Дальнейшей стадией развития льдообразования являются молодые льды, которые подразделяются на серый (толщина 10—15 см) и серо-белый (толщиной 15—30 см) лёд.

Морской лёд, развивающийся из молодого льда и имеющий возраст не более одного зимнего периода, называется однолетним льдом. Этот однолетний лёд может быть:

  • тонким однолетним льдом — белый лёд толщиной 30—70 см,
  • средней толщины — 70—120 см,
  • толстым однолетним льдом — толщиной более 120 см.

Если морской лёд подвергался таянию хотя бы в течение одного года, он относится к старым льдам. Старые льды подразделяются на:

  • остаточный однолетний — не растаявший летом лёд, находящийся вновь в стадии замерзания,
  • двухлетний — просуществовавший более одного года (толщина достигает 2 м),
  • многолетний — старый лёд толщиной 3 м и более, переживший таяние не менее двух лет. Поверхность такого льда покрыта многочисленными неровностями, буграми, образовавшимися в результате неоднократного таяния. Нижняя поверхность многолетних льдов также отличается большой неровностью и разнообразием формы.

Толщина многолетних льдов в Северном Ледовитом океане в некоторых районах достигает 4 м.

В антарктических водах в основном находится однолетний лёд толщиной до 1,5 м, который исчезает в летнее время.

По структуре морской лёд условно делится на игольчатый, губчатый и зернистый, хотя обычно он встречается смешанной структуры.

Области распространения [ править | править код ]

По продолжительности сохранения ледяного покрова и его генезису акваторию Мирового океана обычно делят на шесть зон [5] .

  1. Акватории, на которых ледяной покров присутствует круглый год (центр Арктики, северные районы морей Северного Ледовитого океана, антарктические моря Амундсена, Беллинсгаузена, Уэдделла.
  2. Акватории, на которых льды ежегодно меняются (Баренцево, Карское моря).
  3. Акватории с сезонным ледяным покровом, образующимся зимой и полностью исчезающим летом (Азовское, Аральское, Балтийское, Белое, Каспийское, Охотское, Японское моря).
  4. Акватории, на которых льды образуются только в очень холодные зимы (Мраморное, Северное, Чёрное моря).
  5. Акватории, на которых отмечается лёд, принесённый течениями из-за их границ (Гренландское море, район острова Ньюфаундленд, значительная часть Южного океана, включая область распространения айсбергов.
  6. Остальные акватории, составляющие бо́льшую часть Мирового океана, на поверхности которых льдов не бывает.
Читайте также:  Видеокарта asus nvidia geforce gt 710

Теплофизические свойства раствора CaCl2 (кальций хлористый)

В таблице представлены теплофизические свойства раствора хлористого кальция CaCl2 в зависимости от температуры и концентрации соли: удельная теплоемкость раствора, теплопроводность, вязкость водных растворов, их температуропроводность и число Прандтля. Концентрация соли CaCl2 в растворе от 9,4 до 29,9 %. Температура, при которой приведены свойства определяется содержанием соли в растворе и находится в диапазоне от -55 до 20°С.

Водный раствор хлорида кальция CaCl2 может не замерзать до температуры минус 55°С. Для достижения этого эффекта концентрация соли в растворе должна быть 29,9%, а его плотность составит величину 1286 кг/м 3 .

При увеличении концентрации соли в растворе увеличивается не только его плотность, но и такие теплофизические свойства, как динамическая и кинематическая вязкость водных растворов, а также число Прандтля. Например, динамическая вязкость раствора CaCl2 с концентрацией соли 9,4 % при температуре 20°С равна 0,001236 Па·с, а при увеличении концентрации хлорида кальция в растворе до 30% его динамическая вязкость увеличивается до значения 0,003511 Па·с.

Следует отметить, что на вязкость водных растворов этой соли наиболее сильное влияние оказывает температура. При охлаждении раствора хлорида кальция с 20 до -55°С его динамическая вязкость может увеличиться в 18 раз, а кинематическая — в 25 раз.

Даны следующие теплофизические свойства раствора CaCl2:

  • плотность раствора, кг/м 3 ;
  • температура замерзания °С;
  • удельная (массовая) теплоемкость, кДж/(кг·град);
  • коэффициент теплопроводности, Вт/(м·град);
  • динамическая вязкость водных растворов, Па·с;
  • кинематическая вязкость раствора, м 2 /с;
  • коэффициент температуропроводности, м 2 /с;
  • число Прандтля.

Плотность раствора хлористого кальция CaCl2 в зависимости от температуры

В таблице указаны значения плотности раствора хлористого кальция CaCl2 различной концентрации в зависимости от температуры.
Концентрация хлорида кальция CaCl2 в растворе от 15 до 30 % при температуре от -30 до 15°С. Плотность водного раствора хлористого кальция увеличивается при снижении температуры раствора и увеличением в нем концентрации соли.

Теплопроводность раствора CaCl2 в зависимости от температуры

В таблице представлены значения теплопроводности раствора хлористого кальция CaCl2 различной концентрации при отрицательных температурах.
Концентрация соли CaCl2 в растворе от 0,1 до 37,3 % при температуре от -20 до 0°С. По мере роста концентрации соли в растворе его теплопроводность снижается.

Теплоемкость раствора CaCl2 при 0°С

В таблице представлены значения массовой теплоемкости раствора хлористого кальция CaCl2 различной концентрации при 0°С. Концентрация соли CaCl2 в растворе от 0,1 до 37,3 %. Следует отметить, что с повышением концентрации соли в растворе, его теплоемкость снижается.

Температура замерзания растворов солей NaCl и CaCl2

В таблице приведена температура замерзания растворов солей хлористого натрия NaCl и кальция CaCl2 в зависимости от концентрации соли. Концентрация соли в растворе от 0,1 до 37,3 %. Температура замерзания солевого раствора определяется концентрацией соли в растворе и для хлорида натрия NaCl может достигать значения минус 21,2°С для эвтектического раствора.

Необходимо отметить, что раствор хлористого натрия может не замерзать до температуры минус 21,2°С, а раствор хлористого кальция не замерзает при температуре до минус 55°С.

Плотность раствора NaCl в зависимости от температуры

В таблице представлены значения плотности раствора хлористого натрия NaCl различной концентрации в зависимости от температуры.
Концентрация соли NaCl в растворе от 10 до 25 %. Значения плотности раствора указаны при температуре от -15 до 15°С.

Теплопроводность раствора NaCl в зависимости от температуры

В таблице даны значения теплопроводности раствора хлористого натрия NaCl различной концентрации при отрицательных температурах.
Концентрация соли NaCl в растворе от 0,1 до 26,3 % при температуре от -15 до 0°С. По данным таблицы видно, что теплопроводность водного раствора хлорида натрия снижается по мере роста концентрации соли в растворе.

Читайте также:  Samsung g925f galaxy s6 edge 128gb

Удельная теплоемкость раствора NaCl при 0°С

В таблице представлены значения массовой удельной теплоемкости водного раствора хлористого натрия NaCl различной концентрации при 0°С. Концентрация соли NaCl в растворе от 0,1 до 26,3 %. По данным таблицы видно, что с повышением концентрации соли в растворе, его теплоемкость снижается.

Теплофизические свойства раствора NaCl

В таблице представлены теплофизические свойства раствора хлористого натрия NaCl в зависимости от температуры и концентрации соли. Концентрация хлорида натрия NaCl в растворе от 7 до 23,1 %. Необходимо отметить, что при охлаждении водного раствора хлорида натрия его удельная теплоемкость меняется слабо, теплопроводность снижается, а значение вязкости раствора увеличивается.

Даны следующие теплофизические свойства раствора NaCl:

  • плотность раствора, кг/м 3 ;
  • температура замерзания °С;
  • удельная (массовая) теплоемкость, кДж/(кг·град);
  • коэффициент теплопроводности, Вт/(м·град);
  • динамическая вязкость раствора, Па·с;
  • кинематическая вязкость раствора, м 2 /с;
  • коэффициент температуропроводности, м 2 /с;
  • число Прандтля.

Плотность растворов хлористого натрия NaCl и кальция CaCl2 в зависимости от концентрации при 15°С

В таблице представлены значения плотности растворов хлористого натрия NaCl и кальция CaCl2 в зависимости от концентрации. Концентрация соли NaCl в растворе от 0,1 до 26,3 % при температуре раствора 15°С. Концентрация хлорида кальция CaCl2 в растворе находится в диапазоне от 0,1 до 37,3 % при его температуре 15°С. Плотность растворов хлорида натрия и кальция растет при увеличении содержания в нем соли.

Коэффициент объемного расширения растворов хлористого натрия NaCl и кальция CaCl2

В таблице даны значения среднего коэффициента объемного расширения водных растворов хлористого натрия NaCl и кальция CaCl2 в зависимости от концентрации и температуры.
Коэффициент объемного расширения раствора соли NaCl указан при температуре от -20 до 20°С.
Коэффициент объемного расширения раствора хлорида CaCl2 представлен при температуре от -30 до 20°С.

  1. Чубик И. А., Маслов А. М. Справочник по теплофизическим характеристикам пищевых продуктов и полуфабрикатов.
  2. Данилова Г. Н. и др. Сборник задач по процессам теплообмена в пищевой и холодильной промышленности. М.: Пищевая промышленность, 1976.- 240 с.

Соли применяются для искусственной минерализации растворов при бурении соляных отложений и минерализованных пород, а также для приготовления растворов в зимнее время, при бурении в многолетнемерзлых породах.

Хлористый натрий NaCl (поваренная каменная соль, галит) применяется обычно в виде технической соли (серого или светло-серого цвета); плотность 2,16 г/см 3 ; предельная растворимость при 25 ºС 26,43% (по массе). Растворы применяются также для вскрытия неустойчивых глинистых пород. Соль совместно с ССБ обеспечивает снижение вязкости и водоотдачи, с УЩР — повышение вязкости и СНС. Температура замерзания водных растворов NaCl приведена в табл. 10.8.

Таблица 10.8. Температура замерзания раствора NaCl

Ссылка на основную публикацию
Телефон греется и тормозит что делать
Почему тормозит устройство на Andro >Прежде чем перейти непосредственно к решению проблем, стоит указать на их причины. Зная о том,...
Стоит ли учиться на нефтяника
Добыча газа и нефти — очень популярная сфера в России. Именно поэтому большое количество выпускников стремится поступать на специальность «Нефтегазовое...
Стойка для аудио аппаратуры своими руками
Решил создать данную тему,т.к. думаю форумчанам будет интересно почитать, а кому то и поделиться личным опытом, по изготовлению своими руками...
Телефон завис на загрузке андроид
В результате поломки аппаратной части или сбоя в работе ОС любой Android-смартфон может перестать реагировать на кнопку включения. Частой можно...
Adblock detector