Средняя арифметическая скорость это

Средняя арифметическая скорость это

Относительная скорость применяется для расчета числа молекул, движущихся со скоростями в интервале от v до v + dv:

Закон распределения молекул идеального газа по скоростям в стационарном состоянии (распределение Максвелла):

где dnv – среднее число молекул в единице объема со скоростями в интервале от v до v + dv;

n – число молекул в единице объема.

Функция распределения (доля молекул от их общего числа отнесена к некоторому интервалу скоростей):

где dnv/ndv – функция распределения.

Свободные пробеги молекул – прямолинейные участки траектории, проходимые молекулой между двумя последовательными соударениями.

Средняя длина свободного пробега молекулы – среднее расстояние, проходимое молекулой между двумя соударениями:

где Z – число соударений;

– средняя скорость молекулы;

k – постоянная Больцмана;

T – абсолютная температура.

Среднее число соударений – число соударений молекул, численно равное отношению средней скорости движения молекул к средней длине свободного пробега:

, или

Эффективный диаметр молекулыd – минимальное расстояние, на которое сближаются при столкновении центры 2–х молекул.

Эффективное сечение – величина равная

Барометрическая формулапоказывает, что давление убывает с высотой тем быстрее, чем тяжелее газ и чем ниже его температура:

Закон распределения молекул газа по высоте в поле сил тяготения (распределение Больцмана):

, ,

где no – число молекул в единице объема в том месте, где потенциальная энергия молекул равна нулю;

n – число молекул в единице объема в тех точках пространства, где потенциальная энергия молекул равна Wp.

Распределение Максвелла–Больцмана – благодаря этому распределению можно определить долю молекул идеального газа, имеющих скорости в интервале от v до v + dv и обладающих потенциалом c = gh во внешнем силовом поле:

,

где vв – наиболее вероятная скорость, значению которой соответствует максимум кривой Максвелла.

Зависимость плотности газа от высоты:

; ,

где mo – масса одной молекулы.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9634 — | 7524 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

В этом разделе приводятся некоторые следствия, вытекающие из формул ( 3.29 ) и ( 3.30 ). В качестве примера на рис. 3.3 изображены две кривые, соответствующие распределениям f(v) молекул кислорода O2 по абсолютным величинам скоростей при температурах Т1 = 300 К и Т2 = 1 300 К.

Рис. 3.3. Распределение молекул кислорода по скоростям при разных температурах T1 = 300 К и T2 = 1 300 К

Наиболее вероятная скорость. При бесконечно малых и неограниченно больших значениях скоростей функция распределения стремится к нулю

то есть такие предельные значения скоростей маловероятны в системе. Следовательно, при каком-то значении скорости функция f(v) достигает своего максимума.

Наиболее вероятная скорость vВЕР — это скорость, отвечающая максимальному значению функции распределения.

Ее можно найти, решая уравнение

откуда следует, что

Иными словами, наиболее вероятной называется скорость, вблизи которой на единичный интервал приходится наибольшее число молекул. В этой точке f(v) принимает максимальное значение:

Соотношения (3.31), (3.32) могут быть полезны для анализа изменения функции распределения при изменении температуры газа или при изменении рода газа, то есть массы молекул. Отметим, что как следует из (3.26) – (3.29), распределение Максвелла зависит не отдельно от массы молекул и отдельно от температуры газа, а от их отношения . Поэтому распределение не только «буквенно» но и численно одно и тоже, например, для молекулярного водорода при температуре и для гелия при температуре .

Читайте также:  Что делать если в наушниках помехи

С ростом температуры наиболее вероятная скорость vВЕР (3.31) увеличивается, то есть максимум функции f(v) сдвигается вправо (см. рис. 3.3), Т2 > Т1. При этом f(vВЕР) уменьшается, то есть кривая становится более пологой. Так же деформируется кривая, если температура постоянна, но масса молекул уменьшается. Напомним, что при любых деформациях функции распределения f(v) площадь под кривыми постоянна и равна единице в соответствии с формулой ( 3.30 ).

Относительное количество молекул, скорость которых превышает некоторое значение v, определяется выражением

На графике (см. рис. 3.3) этому интегралу соответствует лежащая справа от v часть площади (отмечена штриховкой), ограниченная кривой f(v) и осью скоростей. Как видно из рис. 3.3, относительное количество молекул, имеющих скорости, превышающие v, растет с повышением температуры.

В заключение этого раздела заметим, что во всех формулах для функции распределения и характерных скоростей входит отношение массы молекулы к постоянной Больцмана

Умножая числитель и знаменатель на число Авогадро NA и учитывая, что

молярная масса газа, a

универсальная газовая постоянная, мы всюду можем использовать это отношение в наиболее удобной для конкретной задачи форме

Распределение молекул по величинам безразмерной скорости. Если при графическом изображении функции распределения Максвелла (3.29) по оси абсцисс откладывать скорости молекул v, то форма кривой и положение максимума будут зависеть от массы молекул и от температуры газа. Но если по горизонтальной оси откладывать отношение скорости к наиболее вероятной скорости, то есть безразмерную скорость

то для всех температур и любых масс молекул (любых газов) получится одна и та же кривая (рис. 3.4).

Рис. 3.4. Распределение Максвелла по величинам безразмерной скорости

Сделав замену переменной

в ( 3.29 ) и учитывая, что

получим распределение Максвелла в форме

Эта формула и соответствующий ей график (см. рис. 3.4) удобны для решения многих задач.

Пример. Найдем, какая часть общего числа молекул кислорода имеет при температуре 27 °С скорости, отличающиеся от наиболее вероятной не более, чем на 1 %; а также скорости в интервале 562–572 м/с.

Произведем необходимые вычисления. Чтобы ответить на первый вопрос задачи, учтем, что u = 1 при v = vВЕР. Величина интервала du = 0,02. Следовательно,

Вычислим наиболее вероятную скорость:

Найдем отношение v = 562 м/с к vВЕР = 395 м/с

Определим по кривой (см. рис. 3.4) значение функции f(u) при u = 1,42. Получаем f(u) = 0,62. Ширина интервала Dv = 10 м/с (Du = 10/395 = 0,0253). Следовательно, доля молекул в этом интервале

Интересно отметить, что молекула кислорода проходит за секунду путь, равный в среднем 0,4 км. Но не нужно забывать о соударениях молекул. Из-за них молекула по прямой движется очень недолго, и ее путь представляет собой ломаную линию. Поэтому молекула, двигаясь с огромной скоростью по отдельным звеньям ломаной траектории, передвигается от слоя к слою газа со сравнительно небольшой скоростью.

Средняя арифметическая скорость. Знание функции распределения молекул по скоростям f(v) дает возможность найти среднее значение скорости, а также любой величины, являющейся функцией скорости, например квадрата скорости v 2 или кинетической энергии молекулы mv 2 /2.

Средняя арифметическая скорость — это отношение суммы абсолютных величин скоростей всех молекул в системе к числу этих молекул.

Читайте также:  Top227yn datasheet на русском

Разобьем интервал всех возможных значений скорости от до бесконечности на малые интервалы Dvi. Каждому интервалу соответствует количество молекул

Так как интервалы Dvi, малы, то можно приближенно считать скорости молекул данного интервала одинаковыми и равными vi. Сумма значений скоростей молекул интервала

Сумма значений скоростей всех молекул

Разделив эту сумму на число молекул, получим выражение для средней арифметической скорости

Переходя от суммы к интегралу, получаем

Вычисляя интеграл, получаем среднюю арифметическую скорость молекул

Среднеквадратичная скорость. Чтобы найти среднее значение произвольной функции L(v) скорости, нужно эту функцию умножить на функцию распределения и проинтегрировать по всем возможным значениям скорости:

В частности, при L(v) = v отсюда находится .

Среднее значение квадрата скорости равно отношению суммы квадратов скоростей всех молекул системы к общему числу молекул. Таким образом,

Среднеквадратичная скорость это корень квадратный из среднего значения квадрата скорости молекул

Следует отметить, что характерные скорости отличаются друг от друга лишь численными множителями, причем

а зависимость от Т и m (или m) у них одинаковая.

Через среднеквадратичную скорость выражается средняя кинетическая энергия поступательного движения молекул

Этот результат находится в согласии с формулой (1.14) кинетической теории идеальных газов и с законом о равнораспределении энергии, который гласит, что на каждую степень свободы молекулы приходится энергия kBТ/2. Три степени свободы поступательного движения молекулы как раз соответствуют полученному здесь результату (3.44). В сущности, именно для того, чтобы получить такое соответствие, мы выбрали должным образом коэффициент α в ( 3.26 ).

Эксперимент по проверке распределения Максвелла. Необходимо еще раз подчеркнуть, что установленный Максвеллом закон распределения молекул по скоростям и все вытекающие из него следствия справедливы только для газа, находящегося в равновесии.

Закон справедлив для любого числа молекул N, если только это число достаточно велико. Закон Максвелла — статистический, а законы статистики выполняются тем точнее, чем к большему числу одинаковых объектов они применяются. При малом числе объектов могут наблюдаться значительные отклонения от предсказанной статистики — флуктуации.

Экспериментальное определение распределения скоростей молекул было осуществлено впервые О. Штерном в 1920 г. Исследовалось распределение по скоростям одноатомных молекул паров металлов (Ag или Pt), из которых была изготовлена нить, расположенная на оси двух цилиндров. Нить нагревалась электрическим током, и металл испарялся (см. рис 3.5).

Рис. 3.5 Схема опыта Штерна: 1 — вид установки сбоку; 2 — вид установки сверху

Молекулы, прошедшие через щель во внутреннем цилиндре, летели по прямой и оседали на стенке холодного внешнего цилиндра. Если привести всю установку во вращение (щель все время против точки В), то молекулы, обладающие большой скоростью v, попадут в некоторую точку вблизи В, а более медленные затратят на путь больше времени и попадут в точки, отстоящие дальше от В. Следует обратить внимание, что вылетающие молекулы движутся по прямой, они не участвуют во вращательном движении. Поскольку молекулы в зависимости от скорости попадают в разные точки внешнего цилиндра, то исследуя толщину слоя металла, осевшего на его стенку, можно составить представление о распределении молекул по скоростям.

Найдем распределение молекул по расстояниям S от точки В до места их попадания на стенку цилиндра. Если R и r радиусы большого и малого цилиндров, соответственно (см. рис.), то время полета от щели до стенки цилиндра

Читайте также:  Как определить нормальное ускорение точки

За это время цилиндр повернется на угол

где ω — угловая скорость вращения установки. Соответственно, точка попадания будет смещена относительно В на расстояние

Подставляя сюда время полета, получаем связь скорости молекулы с расстоянием S:

Подставляя, в свою очередь, полученное выражение в распределение Максвелла и учитывая, что

находим распределение молекул по расстояниям S:

(мы опускаем выражение для нормировочной постоянной С).

Опыты Штерна подтвердили справедливость закона, установленного Максвеллом.

Чтобы найти среднее арифметическое, нужно сложить все числа и поделить их сумму на их количество.

Найти среднее арифметическое 2, 3 и 4 .

Обозначим среднее арифметическое буквой « m ». По определению выше найдем сумму всех чисел.

Разделим полученную сумму на количество взятых чисел. У нас по условию три числа.

В итоге мы получаем формулу среднего арифметического:

Для чего нужно среднее арифметическое?

Кроме того, что его постоянно предлагают найти на уроках, нахождение среднего арифметического весьма полезно и в жизни.

Например, вы решили продавать футбольные мячи. Но так как вы новичок в этом деле, совершенно непонятно по какой цене вам продавать мячи.

Тогда вы решаете узнать, по какой цене в вашем районе уже продают футбольные мячи конкуренты. Узнаем цены в магазинах и составим таблицу.

Магазин Цена футбольного мяча
«Спорт-товары» 290 руб.
«Adidas» 360 руб.
«Все для футбола» 310 руб.

Цены на мячи в магазинах оказались совсем разные. Какую цену для продажи футбольного мяча нам лучше выбрать?

Если выбрать самую низкую ( 290 руб.), то мы будем продавать товар себе в убыток. Если выбрать самую высокую ( 360 руб.), то покупатели не будут приобретать футбольные мячи у нас.

Нам нужна средняя цена. Здесь на помощь приходит среднее арифметическое.

Вычислим среднее арифметическое цен на футбольные мячи:

Средняя цена =

290 + 360 + 310
3

=

960
3

= 320 руб.

Таким образом, мы получили среднюю цену ( 320 руб.), по которой мы можем продавать футбольный мяч не слишком дёшево и не слишком дорого.

Средняя скорость движения

Со средним арифметическим тесно связано понятие средней скорости движения.

Наблюдая за движением транспорта в городе, можно заметить, что машины, то разгоняются и едут с большой скоростью, то замедляются и едут с маленькой скоростью.

Таких участков на пути следования автотранспорта бывает много. Поэтому для удобства расчётов, используют понятие средней скорости движения.

Средняя скорость движения — это весь пройденный путь разделить на всё время движения.

Ссылка на основную публикацию
Сони плейстейшен нетворк вход
Игры по сети, развлечения, друзья, покупки и многое другое – ваше сетевое приключение начинается в PSN. Подключитесь к нашему сетевому...
Смарт часы фикситайм 3 отзывы
Данный товар недоступен для доставки в Ваш регион Мы всегда стремимся к лучшему, чтобы радовать своих покупателей самыми выгодными ценами....
Смарт часы эпл для детей
1 min Apple Watch — самые популярные умные часы в мире. Является ли это идеальным выбором для вашего ребенка, зависит...
Сони f3112 xperia xa
Недорогой смартфон компании Sony (22 990 рублей за Dual версию) с интересным дизайном, LTE, двумя отдельными слотами для SIM-карт, слотом...
Adblock detector