Схема ардуино нано на ch340

Схема ардуино нано на ch340

Модуль Nano V3.0 (CH340) на микроконтроллере ATmega328 с USB кабелем, совместимый с ARDUINO

  • Микроконтроллер: ATmega328P
  • Тактовая частота: 16 МГц
  • Флеш-память: 32 Килобайта
  • Загрузчик: 2 Килобайта, выделенного из флеш-памяти
  • ОЗУ-память: 2 Килобайта
  • EEPROM-память: 1 Килобайт
  • Рабочее напряжение: 5 вольт
  • Входное напряжение, VIN: 7-12 вольт
  • Входное напряжение максимальное, VIN: 6-20 вольт
  • Цифровые входы/выходы: 19
  • Выходы регулируемого напряжения, ШИМ: 6
  • Аналоговые входы, АЦП: 8
  • Максимальный постоянный ток входа/выхода: 40 мА, рекомендуемый: 20мА
  • Максимальный постоянный ток выхода 3.3В: 30 мА
  • USB-разъем: miniUSB Type-B
  • Светодиодная индикация: питание, обмен данными RX и TX, пользовательский вывод D13
  • Кнопка сброса "Reset"
  • Миниатюрные размеры: 45 * 18 мм.
  • Вес модуля 6 гр.

Модуль ARDUINO NANO нашёл огромную популярность среди начинающих и профессиональных разработчиков проектов и устройств, в основе которых используются ARDUINO-совместимые платы. Сердцем модуля стал микроконтроллер ATmega328P, работающий от стандартного для большинства ARDUINO-плат базовых 5 вольт и на частоте кварцевого резонатора 16 мегагерц, также отлично зарекомендовавший себя в широко известной сообществу ARDUINO плате UNO.

Модуль NANO располагает почти всеми доступными возможностями старшей модели, расположенными на 30 выводах, за исключением отсутствующего бочкообразного разъёма подключения внешнего источника питания. Физические размеры значительно уменьшены за счёт двухстороннего монтажа электронных компонентов.

Любое подключение к модулю потребует от вас умений в пайке. Для максимального удобства, поставляемые в комплекте разъёмы-ножки, с шириной шага 2.54мм между контактами, не припаяны. Вы можете самостоятельно установить данные разъёмы или использовать любые сторонние коннекторы. Если сводить размер готовой модели к самому минимуму, логичным будет непосредственная припайка к выводам соединительных проводов. Установив стандартные ножки в макетную плату для монтажа без пайки, и поместив на них сверху в соответствии с выводами плату модуля, у вас получиться закрепить их максимально ровно. В дальнейшем, это поможет без труда соединять элементы конструкции при прототипировании вашего изделия, находящего в процессе создания и тестирования.

Фактически, ни один из созданных проектов не обходиться без всевозможных дополнительных датчиков, сенсоров, экранов, моторов и других полезных и часто используемых расширений. При желании, вам доступно наращивание микроконтроллера большим ассортиментом существующих расширений, имеющих аналогичный с NANO физический размер. Или, при необходимости, произвести непосредственную коммутацию с дополнительными разноразмерными дисплеями, датчиками, сенсорами, используя проводное соединение. Плата ARDUINO NANO обеспечивает два варианта выходного питания: 5 вольт и 3.3 вольта, заведомо не ограничивая пользователя в подборе совместимых по рабочему напряжению подключаемых модулей. Используя проводное соединение или специальные платы-переходники, модуль можно легко адаптировать под расширения стандарта UNO R3.

Еще одним незначительным ограничением является отсутствующий самовосстанавливающийся предохранитель, отключающий питание модуля от USB-порта в случае превышения максимально допустимой общей нагрузки по току в 500 миллиампер или тока короткого замыкания. Важно знать, что все современные персональные компьютеры обладают встроенной защитой USB-порта от перегрузок и позволяют нагружать порт максимальным током до 900 миллиампер. Просим вас быть внимательными при проектировании и коммутации устройства.

Стоит упомянуть, что плата оснащена бюджетным микроконтроллером CH340, выполняющему роль связующего звена между имеющимся у платы NANO miniUSB-портом и основным контроллером ATmega328P. Данный микрочип разработан китайской компанией WCH . Подробную информацию по его настройке вы можете найти в разделе "Установка CH340G".

Размеры NANO позволяют использовать плату в создании миниатюрных проектов, её без труда удастся поместить в небольшой корпус, размеры которого будут близки к размерам спичечного коробка.

Расположение элементов и выводов на плате NANO

Цифровые входы/выходы расположились по обеим боковым сторонам платы. Они способны оперировать напряжением логической "единицы" 5 вольт и напряжением логического "нуля", равного аналогичному значению напряжения. Выводы могут работать в настраиваемых для каждого контакта режимах приёма и передачи значений логических уровней. Максимальный пропускной ток отдельного цифрового вывода составляет 40 миллиампер. Некоторые из цифровых контактов совмещены с аналоговыми и обладают дополнительным функциональным инструментарием. Для взаимодействия с цифровыми выводами применяются функции pinMode(), digitalWrite(), digitalRead().

  • TX1 и RX0 — асинхронный последовательный интерфейс UART. RX (вывод 0, "receive") осуществляет приём входящей информации, TX (вывод 1, "transfer") организует передачу исходящей. Сопряжение с другим устройством осуществляется по схеме RX->TX, TX->RX. Оба вывода подключены к ответным контактам связующей микросхемы CH340. Индикация обмена данных светодиодами RX и TX при таком подключении не осуществляется.
  • На выводы D2 и D3 назначены внешние прерывания INT0 и INT1. Используются совместно с функцией attachInterrupt().
  • A4 и А5 совмещены с двунаправленным последовательным интерфейсом IIC/I2C/TWI. A4 линия последовательные данных SDA (Serial Data). А5 — шина тактирования SCL (Serial Clock).
  • D10, D11, D12 и D13 — выполняют роль последовательного периферийного интерфейса SPI, имеющего 4 линии управления. При обмене данными между двумя устройствами главный из них управляем процессом. По линии SS (10) определяется начало и конец сеанса передачи данных. MOSI (11) — линия передаваемых данных от главного к второстепенному, MISO (10) — линия приема информации от второстепенного к главному. Обе линии подключаются ко второму устройству по схеме MOSI->MISO и MISO->MOSI. SCK (SCLK, 13) — шина тактирования, генерируемая главным устройством импульсов синхронизации.
  • ШИМ — выводы широтно-импульсной модуляции, имеющие разрешение 8 бит. Контакты позволяют гибко управлять исходящим напряжением в диапазоне от 0 до 5 вольт. Установка нужного напряжения осуществляется при помощи функции analogWrite(). Выводы имеют маркировку D3, D5, D6, D9, D10 и D11.

Аналоговые выводы обозначены на плате в цифро-буквенном виде A0 — A7 и расположены по одной стороне модуля, имеют разрешение 10 бит. Контакты А0-А5 полностью совместимы с цифровыми функциями, а контакты А6-А7 исключительно с аналоговыми функциями.

Вдобавок, аналоговые выводы А4 и А5 совмещены с линиями двунаправленного последовательного интерфейса IIC/I2C/TWI. Контакт А4 — канал последовательных данных SDA (Serial Data), канал А5 — шина тактирования SCL (Serial Clock).

Прочие выводы

  • Питание (PWR), светодиод светится при подключенном источнике питания к плате;
  • Пользовательский (L), управляемый светодиод цифрового контакта 13. Зажигается и гаснет при установке значений высокого уровня HIGH и низкого уровня LOW на вывод D13.
  • Передача данных RX и TX, — светодиоды подключены к связующему микроконтроллеру CH340 и отображают процесс приёмо-передачи данных по USB.

REF — задаёт опорное напряжение и выполняет функцию сравнения между напряжением на входе любого аналогового вывода и опорного. Используется программная функция analogRead(), генерирующая значения от 0 до 1023 (10-бит). При задании опорного напряжения 5 вольт и сравнивая напряжение аналогового входа 2.5 вольта, результатом будет значение 512.

ICSP — внутрисистемное программирование ATmega328P. Группа из 6 контактов позволяет осуществить непосредственный доступ к памяти микроконтроллера, минуя все цепи обмена данными у платы. Программирование через разъём ICSP позволяет увеличить свободную память до максимального размера путём удаления загрузчика с возможностью его повторной записи обратно. Чаше всего применяются программаторы USB ASP, AVRISP STK500 или любые другие, имеющие интерфейс SPI и поддерживающие оригинальный протокол STK500.

Reset вывод — перезапуск микроконтроллера ATmega328P, происходящий при передаче на контакт напряжения низкого уровня "0" (значение LOW). Функция сброса также используется при программирования микроконтроллера. При вызове перезапуска, загрузчик контроллера ATmega328 несколько секунд ожидает новый код, после чего переходит к выполнение уже имеющейся в памяти программы. В среде разработки ARDUINO API данная функция осуществляется автоматически.

Кнопка Reset — позволяет вручную перезапустить микроконтроллер.

Назначение выводов

Питание

На любой из стадий — создания, проектирования или в законченном варианте вашего изделия, плату NANO можно подключить к источнику питания нижеприведёнными способами:

  • Мини-B USB разъём, напряжение 5 вольт;
  • Вывод VIN (30й контакт) — неотрегулированное напряжение в допустимом диапазоне от 6 до 12 вольт. Поступаемое на вывод VIN напряжение преобразуется встроенным регулятором в постоянные 5 вольт;
  • 5V — название вывода говорит само за себя. К данному контакту подключается стабилизированное (отрегулированное) рабочее напряжение 5 вольт. Превышение недопустимо по причине того, что поступающее через вывод питание не соединено с преобразователем. Последствия повышенного напряжения на входе могут стать необратимы.

Вывод GND является общим (заземлением, минусом, нулём) в любом подключении.

При одновременном подключении к плате нескольких источников питания, выбор происходит автоматически, и приоритетным становиться источник с более высоким потенциалом.

Выводы 5V и 3.3V могут быть использованы как источник базового напряжения для подключаемых дополнительных модулей расширения.

Модуль ARDUINO NANO содержит в себе только один (а не 2, как у старшей модели UNO) преобразователь напряжения на 5 вольт. Пониженное напряжение 3.3 вольта генерируется микросхемой CH340 и доступно лишь в единственном варианте общего питания — через порт USB. Таким образом, если завершённое устройство использует какой-либо другой источник питания, напряжение на контакте 3.3V станет недоступным пользователю. Максимальный допустимый ток нагрузки вывода составляет 30 миллиампер.

Память

Микроконтроллер ATmega328P содержит в себе 32 килобайта доступной для программирования флеш-памяти, из которых 2 килобайта выделено для загрузчика — предварительно записанного специального программного кода, позволяющего программировать память контролера с помощью среды разработки ARDUINO API.

Также, присутствуют 2 килобайта оперативной энергозависимой памяти, и 1 килобайт электрически стираемой перепрограммируемой энергонезависимой памяти EEPROM.

Читайте также:  Темная заставка на экран телефона

Принципиальная схема

Установка CH340, подключаем в первый раз

В некоторых младших сериях ARDUINO, таких как Arduino PRO MINI, для работы требовалась припайка контактов с последующим подключением дополнительных модулей преобразования сигналов USB-в-TTL. В модуле NANO уже реализован один из подобных конвертеров, вам достаточно соединить USB-порт с компьютером, используя кабель. Вы увидите следующее:

Заглянув в Диспетчер устройств, вы обнаружите нераспознанное операционной системой подключение по USB 2.0

Для корректной работы потребуется установка программного обеспечения для чипа CH340G, который создаст виртуальный COM-порт на вашем компьютере. Драйвер для него можно загрузить сейчас. Поддерживаются ОС Windows: XP, Vista, 7, 8, 8.1, 10.

После установки драйвера Диспетчер устройств будет выглядеть следующим образом:

На плате загорится светодиод "ON", информирующий вас о подключенном к плате питании и, спустя доли секунды, светодиод "L" начнёт мигать. При отсутствии в памяти микроконтроллера ATmega328P какой-либо программы, а также при наличии программы, не обращающейся к выводу D13, пользовательский светодиод "L" гореть не будет. Предварительно загруженная программа служит проверкой исправности и работоспособности модуля.

Программирование

Вероятно, вы ранее никогда не были знакомы с комплексом ARDUINO, сочетающий в себе микроконтроллерные платы и среду разработки программного обеспечения на их основе. Если это так, то для начала потребуется загрузить и установить на ваш компьютер бесплатный редактор ARDUINO IDE. Затем, необходимо произвести несложные настройки, которые помогут понять редактору, какую плату вы будете программировать.

Платы ARDUINO можно программировать двумя вариантами: программаторами или с помощью уже установленной вами редактора ARDUINO IDE. Заранее вшитый в микроконтроллер ATmega328P загрузчик позволит загружать код программы через USB-порт. Необходимость в использовании внешних программаторов отпадает.

Программа для семейства плат ARDUINO именуется "Скетч". Прежде чем вы начнете писать или загружать скетч в NANO, проведите настройку редактора ARDUINO IDE:

• В меню Инструменты (Tools)/Плата (Boards) панели управления редактором выберите ваше устройство: Arduino NANO

• В меню Инструменты (Tools)/Процессор (Processor) тип контроллера — ATmega328P (Old Bootloader).

• Сообщаем редактору созданный при подключении виртуальный COM-порт. В ОС Windows порты могут быть COM2, COM3 . COM10 и т.д. На ОС MAC наименование порта может выглядеть как /dev/tty.usbserial-A6006hSc. Выбираем Инструменты (Tools)/Порт (Port) и выделяем COM.

Теперь вы можете смело запускать ваш скетч. После нажатия кнопки "Загрузить" на плате замигают светодиоды RX и TX, показывающие передачу данных через USB-вTTL конвертор, и на экране компьютера появиться сообщение "Загрузка завершена" (Done Uploading). Ваш модуль ARDUINO NANO приступит к выполнению программного кода.

Модуль Nano V3.0 (CH340) на микроконтроллере ATmega328 с USB кабелем, совместимый с ARDUINO

  • Микроконтроллер: ATmega328P
  • Тактовая частота: 16 МГц
  • Флеш-память: 32 Килобайта
  • Загрузчик: 2 Килобайта, выделенного из флеш-памяти
  • ОЗУ-память: 2 Килобайта
  • EEPROM-память: 1 Килобайт
  • Рабочее напряжение: 5 вольт
  • Входное напряжение, VIN: 7-12 вольт
  • Входное напряжение максимальное, VIN: 6-20 вольт
  • Цифровые входы/выходы: 19
  • Выходы регулируемого напряжения, ШИМ: 6
  • Аналоговые входы, АЦП: 8
  • Максимальный постоянный ток входа/выхода: 40 мА, рекомендуемый: 20мА
  • Максимальный постоянный ток выхода 3.3В: 30 мА
  • USB-разъем: miniUSB Type-B
  • Светодиодная индикация: питание, обмен данными RX и TX, пользовательский вывод D13
  • Кнопка сброса "Reset"
  • Миниатюрные размеры: 45 * 18 мм.
  • Вес модуля 6 гр.

Модуль ARDUINO NANO нашёл огромную популярность среди начинающих и профессиональных разработчиков проектов и устройств, в основе которых используются ARDUINO-совместимые платы. Сердцем модуля стал микроконтроллер ATmega328P, работающий от стандартного для большинства ARDUINO-плат базовых 5 вольт и на частоте кварцевого резонатора 16 мегагерц, также отлично зарекомендовавший себя в широко известной сообществу ARDUINO плате UNO.

Модуль NANO располагает почти всеми доступными возможностями старшей модели, расположенными на 30 выводах, за исключением отсутствующего бочкообразного разъёма подключения внешнего источника питания. Физические размеры значительно уменьшены за счёт двухстороннего монтажа электронных компонентов.

Любое подключение к модулю потребует от вас умений в пайке. Для максимального удобства, поставляемые в комплекте разъёмы-ножки, с шириной шага 2.54мм между контактами, не припаяны. Вы можете самостоятельно установить данные разъёмы или использовать любые сторонние коннекторы. Если сводить размер готовой модели к самому минимуму, логичным будет непосредственная припайка к выводам соединительных проводов. Установив стандартные ножки в макетную плату для монтажа без пайки, и поместив на них сверху в соответствии с выводами плату модуля, у вас получиться закрепить их максимально ровно. В дальнейшем, это поможет без труда соединять элементы конструкции при прототипировании вашего изделия, находящего в процессе создания и тестирования.

Фактически, ни один из созданных проектов не обходиться без всевозможных дополнительных датчиков, сенсоров, экранов, моторов и других полезных и часто используемых расширений. При желании, вам доступно наращивание микроконтроллера большим ассортиментом существующих расширений, имеющих аналогичный с NANO физический размер. Или, при необходимости, произвести непосредственную коммутацию с дополнительными разноразмерными дисплеями, датчиками, сенсорами, используя проводное соединение. Плата ARDUINO NANO обеспечивает два варианта выходного питания: 5 вольт и 3.3 вольта, заведомо не ограничивая пользователя в подборе совместимых по рабочему напряжению подключаемых модулей. Используя проводное соединение или специальные платы-переходники, модуль можно легко адаптировать под расширения стандарта UNO R3.

Еще одним незначительным ограничением является отсутствующий самовосстанавливающийся предохранитель, отключающий питание модуля от USB-порта в случае превышения максимально допустимой общей нагрузки по току в 500 миллиампер или тока короткого замыкания. Важно знать, что все современные персональные компьютеры обладают встроенной защитой USB-порта от перегрузок и позволяют нагружать порт максимальным током до 900 миллиампер. Просим вас быть внимательными при проектировании и коммутации устройства.

Стоит упомянуть, что плата оснащена бюджетным микроконтроллером CH340, выполняющему роль связующего звена между имеющимся у платы NANO miniUSB-портом и основным контроллером ATmega328P. Данный микрочип разработан китайской компанией WCH . Подробную информацию по его настройке вы можете найти в разделе "Установка CH340G".

Размеры NANO позволяют использовать плату в создании миниатюрных проектов, её без труда удастся поместить в небольшой корпус, размеры которого будут близки к размерам спичечного коробка.

Расположение элементов и выводов на плате NANO

Цифровые входы/выходы расположились по обеим боковым сторонам платы. Они способны оперировать напряжением логической "единицы" 5 вольт и напряжением логического "нуля", равного аналогичному значению напряжения. Выводы могут работать в настраиваемых для каждого контакта режимах приёма и передачи значений логических уровней. Максимальный пропускной ток отдельного цифрового вывода составляет 40 миллиампер. Некоторые из цифровых контактов совмещены с аналоговыми и обладают дополнительным функциональным инструментарием. Для взаимодействия с цифровыми выводами применяются функции pinMode(), digitalWrite(), digitalRead().

  • TX1 и RX0 — асинхронный последовательный интерфейс UART. RX (вывод 0, "receive") осуществляет приём входящей информации, TX (вывод 1, "transfer") организует передачу исходящей. Сопряжение с другим устройством осуществляется по схеме RX->TX, TX->RX. Оба вывода подключены к ответным контактам связующей микросхемы CH340. Индикация обмена данных светодиодами RX и TX при таком подключении не осуществляется.
  • На выводы D2 и D3 назначены внешние прерывания INT0 и INT1. Используются совместно с функцией attachInterrupt().
  • A4 и А5 совмещены с двунаправленным последовательным интерфейсом IIC/I2C/TWI. A4 линия последовательные данных SDA (Serial Data). А5 — шина тактирования SCL (Serial Clock).
  • D10, D11, D12 и D13 — выполняют роль последовательного периферийного интерфейса SPI, имеющего 4 линии управления. При обмене данными между двумя устройствами главный из них управляем процессом. По линии SS (10) определяется начало и конец сеанса передачи данных. MOSI (11) — линия передаваемых данных от главного к второстепенному, MISO (10) — линия приема информации от второстепенного к главному. Обе линии подключаются ко второму устройству по схеме MOSI->MISO и MISO->MOSI. SCK (SCLK, 13) — шина тактирования, генерируемая главным устройством импульсов синхронизации.
  • ШИМ — выводы широтно-импульсной модуляции, имеющие разрешение 8 бит. Контакты позволяют гибко управлять исходящим напряжением в диапазоне от 0 до 5 вольт. Установка нужного напряжения осуществляется при помощи функции analogWrite(). Выводы имеют маркировку D3, D5, D6, D9, D10 и D11.

Аналоговые выводы обозначены на плате в цифро-буквенном виде A0 — A7 и расположены по одной стороне модуля, имеют разрешение 10 бит. Контакты А0-А5 полностью совместимы с цифровыми функциями, а контакты А6-А7 исключительно с аналоговыми функциями.

Вдобавок, аналоговые выводы А4 и А5 совмещены с линиями двунаправленного последовательного интерфейса IIC/I2C/TWI. Контакт А4 — канал последовательных данных SDA (Serial Data), канал А5 — шина тактирования SCL (Serial Clock).

Прочие выводы

  • Питание (PWR), светодиод светится при подключенном источнике питания к плате;
  • Пользовательский (L), управляемый светодиод цифрового контакта 13. Зажигается и гаснет при установке значений высокого уровня HIGH и низкого уровня LOW на вывод D13.
  • Передача данных RX и TX, — светодиоды подключены к связующему микроконтроллеру CH340 и отображают процесс приёмо-передачи данных по USB.

REF — задаёт опорное напряжение и выполняет функцию сравнения между напряжением на входе любого аналогового вывода и опорного. Используется программная функция analogRead(), генерирующая значения от 0 до 1023 (10-бит). При задании опорного напряжения 5 вольт и сравнивая напряжение аналогового входа 2.5 вольта, результатом будет значение 512.

Читайте также:  Поскольку у меня нет фейсбука

ICSP — внутрисистемное программирование ATmega328P. Группа из 6 контактов позволяет осуществить непосредственный доступ к памяти микроконтроллера, минуя все цепи обмена данными у платы. Программирование через разъём ICSP позволяет увеличить свободную память до максимального размера путём удаления загрузчика с возможностью его повторной записи обратно. Чаше всего применяются программаторы USB ASP, AVRISP STK500 или любые другие, имеющие интерфейс SPI и поддерживающие оригинальный протокол STK500.

Reset вывод — перезапуск микроконтроллера ATmega328P, происходящий при передаче на контакт напряжения низкого уровня "0" (значение LOW). Функция сброса также используется при программирования микроконтроллера. При вызове перезапуска, загрузчик контроллера ATmega328 несколько секунд ожидает новый код, после чего переходит к выполнение уже имеющейся в памяти программы. В среде разработки ARDUINO API данная функция осуществляется автоматически.

Кнопка Reset — позволяет вручную перезапустить микроконтроллер.

Назначение выводов

Питание

На любой из стадий — создания, проектирования или в законченном варианте вашего изделия, плату NANO можно подключить к источнику питания нижеприведёнными способами:

  • Мини-B USB разъём, напряжение 5 вольт;
  • Вывод VIN (30й контакт) — неотрегулированное напряжение в допустимом диапазоне от 6 до 12 вольт. Поступаемое на вывод VIN напряжение преобразуется встроенным регулятором в постоянные 5 вольт;
  • 5V — название вывода говорит само за себя. К данному контакту подключается стабилизированное (отрегулированное) рабочее напряжение 5 вольт. Превышение недопустимо по причине того, что поступающее через вывод питание не соединено с преобразователем. Последствия повышенного напряжения на входе могут стать необратимы.

Вывод GND является общим (заземлением, минусом, нулём) в любом подключении.

При одновременном подключении к плате нескольких источников питания, выбор происходит автоматически, и приоритетным становиться источник с более высоким потенциалом.

Выводы 5V и 3.3V могут быть использованы как источник базового напряжения для подключаемых дополнительных модулей расширения.

Модуль ARDUINO NANO содержит в себе только один (а не 2, как у старшей модели UNO) преобразователь напряжения на 5 вольт. Пониженное напряжение 3.3 вольта генерируется микросхемой CH340 и доступно лишь в единственном варианте общего питания — через порт USB. Таким образом, если завершённое устройство использует какой-либо другой источник питания, напряжение на контакте 3.3V станет недоступным пользователю. Максимальный допустимый ток нагрузки вывода составляет 30 миллиампер.

Память

Микроконтроллер ATmega328P содержит в себе 32 килобайта доступной для программирования флеш-памяти, из которых 2 килобайта выделено для загрузчика — предварительно записанного специального программного кода, позволяющего программировать память контролера с помощью среды разработки ARDUINO API.

Также, присутствуют 2 килобайта оперативной энергозависимой памяти, и 1 килобайт электрически стираемой перепрограммируемой энергонезависимой памяти EEPROM.

Принципиальная схема

Установка CH340, подключаем в первый раз

В некоторых младших сериях ARDUINO, таких как Arduino PRO MINI, для работы требовалась припайка контактов с последующим подключением дополнительных модулей преобразования сигналов USB-в-TTL. В модуле NANO уже реализован один из подобных конвертеров, вам достаточно соединить USB-порт с компьютером, используя кабель. Вы увидите следующее:

Заглянув в Диспетчер устройств, вы обнаружите нераспознанное операционной системой подключение по USB 2.0

Для корректной работы потребуется установка программного обеспечения для чипа CH340G, который создаст виртуальный COM-порт на вашем компьютере. Драйвер для него можно загрузить сейчас. Поддерживаются ОС Windows: XP, Vista, 7, 8, 8.1, 10.

После установки драйвера Диспетчер устройств будет выглядеть следующим образом:

На плате загорится светодиод "ON", информирующий вас о подключенном к плате питании и, спустя доли секунды, светодиод "L" начнёт мигать. При отсутствии в памяти микроконтроллера ATmega328P какой-либо программы, а также при наличии программы, не обращающейся к выводу D13, пользовательский светодиод "L" гореть не будет. Предварительно загруженная программа служит проверкой исправности и работоспособности модуля.

Программирование

Вероятно, вы ранее никогда не были знакомы с комплексом ARDUINO, сочетающий в себе микроконтроллерные платы и среду разработки программного обеспечения на их основе. Если это так, то для начала потребуется загрузить и установить на ваш компьютер бесплатный редактор ARDUINO IDE. Затем, необходимо произвести несложные настройки, которые помогут понять редактору, какую плату вы будете программировать.

Платы ARDUINO можно программировать двумя вариантами: программаторами или с помощью уже установленной вами редактора ARDUINO IDE. Заранее вшитый в микроконтроллер ATmega328P загрузчик позволит загружать код программы через USB-порт. Необходимость в использовании внешних программаторов отпадает.

Программа для семейства плат ARDUINO именуется "Скетч". Прежде чем вы начнете писать или загружать скетч в NANO, проведите настройку редактора ARDUINO IDE:

• В меню Инструменты (Tools)/Плата (Boards) панели управления редактором выберите ваше устройство: Arduino NANO

• В меню Инструменты (Tools)/Процессор (Processor) тип контроллера — ATmega328P (Old Bootloader).

• Сообщаем редактору созданный при подключении виртуальный COM-порт. В ОС Windows порты могут быть COM2, COM3 . COM10 и т.д. На ОС MAC наименование порта может выглядеть как /dev/tty.usbserial-A6006hSc. Выбираем Инструменты (Tools)/Порт (Port) и выделяем COM.

Теперь вы можете смело запускать ваш скетч. После нажатия кнопки "Загрузить" на плате замигают светодиоды RX и TX, показывающие передачу данных через USB-вTTL конвертор, и на экране компьютера появиться сообщение "Загрузка завершена" (Done Uploading). Ваш модуль ARDUINO NANO приступит к выполнению программного кода.

Arduino Nano входит в тройку самых популярных плат ардуино. Она позволяет создавать компактные устройства, использующие тот же контроллер, что и в Arduino Uno. Название платы нано говорит само за себя – она действительно имеет небольшие размеры при той же функциональности. В этой статье мы рассмотрим плату поближе: разберемся с распиновкой платы, узнаем особенности подключения и сделаем краткий обзор шилдов и плат расширения.

Плата Arduino Nano

Nano – одна из самых миниатюрных плат Ардуино. Она является полным аналогом Arduino Uno – так же работает на чипе ATmega328P (хотя можно еще встретить варианты с ATmega168), но с меньшим форм-фактором. Из-за своих габаритных размеров плата часто используется в проектах, в которых важна компактность. На плате отсутствует вынесенное гнездо внешнего питания, Ардуино работает через USB (miniUSB или microUSB). В остальном параметры совпадают с моделью Arduino Uno.

Описание платы Arduino Nano

Технические характеристики Arduino Nano:

  • Напряжение питания 5В;
  • Входное питание 7-12В (рекомендованное);
  • Количество цифровых пинов – 14, из них 6 могут использоваться в качестве выходов ШИМ;
  • 8 аналоговых входов;
  • Максимальный ток цифрового выхода 40 мА;
  • Флэш- память 16 Кб или 32 Кб, в зависимости от чипа;
  • ОЗУ 1 Кб или 2 Кб, в зависимости от чипа;
  • EEPROM 512 байт или 1 Кб;
  • Частота 16 МГц;
  • Размеры 19 х 42 мм;
  • Вес 7 г.

Питание платы может осуществляться двумя способами:

  1. Через mini-USB или microUSB при подключении к компьютеру;
  2. Через внешний источник питания, имеющий напряжение 6-20 В с низким уровнем пульсаций.

Стабилизация внешнего источника выполняется при помощи схемы LM1117IMPX-5.0 на 5В. При подключении через кабель от компьютера подключение к стабилизатору происходит через диод Шоттки. Схемы обоих типов питания приведены на рисунке.

При подключении двух источников напряжения плата выбирает с наибольшим питанием.

У платы Arduino Nano имеются такие же ограничения по напряжению и току на входы и выходы платы. Все цифровые и аналоговые контакты работают в диапазоне от 0 до 5 В. При подаче питания, выходящего за рамки этих значений, напряжение будет ограничиваться защитными диодами. В этом случае сигнал должен подключаться через резистор, чтобы не вывести контроллер из строя. Наибольшее значение втекающего или вытекающего тока не должно превышать значение 40 мА, а общий ток контактов должен быть не более 200 мА.

На плате имеются 4 светодиода, которые показывают состояние сигнала. Они обозначены как TX, RX, PWR и L. На первых двух светодиод загорается, когда уровень сигнала низкий, и показывает, что сигнал TX или RX активен. Светодиод PWR загорается при напряжении в 5 В и показывает, что подключено питание. Последний светодиод – общего назначения, загорается, когда подается высокий сигнал.

На настоящий момент выпускается несколько видов Arduino Nano. Есть версии 2.X, 3.0., которые отличаются только чипом, на котором они работают. В версии 2.Х. используется чип ATmega168 с меньшим объемом памяти (флэш, энергонезависимой) и пониженной тактовой частотой, версия 3.0. работает на чипе ATmega328.

Где купить Arduino Nano

Традиционно самые низкие цены предлагают зарубежные интернет-магазины. В России цены почти всегда будут выше на 20-200 процентов, но не придется ждать заказа около месяца.

Приведем ссылки на надежных поставщиков Aliexpress:

Распиновка Arduino Nano

Плата Ардуино Нано имеет 14 цифровых контактов, которые помечаются буквой D (цифровой, digital). Контакты используются как входы и выходы, у каждого имеется подтягивающий резистор.

Аналоговые пины обозначаются буквой А и используются как входы. У них отсутствую подтягивающие резисторы, они измеряют поданное на них напряжение и возвращают значение при помощи функции analogRead().

На некоторых цифровых пинах можно увидеть значок

. Такие контакты можно использовать в качестве выходов ШИМ. Ардуино нано оснащена шестью такими контактами – это пины D3, D5, D6, D9, D10, D11. Для работы с ШИМ выводами используется функция analogWrite().

Описание пинов Ардуино Нано

  • Цифровые входы/выходы: D0-D13.
  • Аналоговые входы/выходы: A0-A7 (10-разрядный АЦП).
  • ШИМ: пины 3, 5, 6, 9, 10, 11.
  • UART : D0 и D1 (TX и RX соответственно).
  • I2C: SDA – A4, SCL -A5.
  • SPI: MOSI – 11, MISO – 12, SCK – 13, SS(10).
Читайте также:  Как объединить doc файлы в один

Пробежимся по пинам:

  • 0 – TX (передача данных UART), D0.
  • 1 – RX (прием данных UART), D1. RX и TX могут использоваться для связи по последовательному интерфейсу или как обычные порты данных.
  • 3, 29 – сброс.
  • 4, 29 – земля.
  • 5 – D2, прерывание INT0.
  • 6 – D3, прерывание INT1 / ШИМ / AIN0.
  • 7 – A4, счетчик T0 / шина I2C SDA / AIN1. AIN0 и AIN1 – входы для быстродействующего аналогового компаратора.
  • 8 – A5, счетчик T1 / шина I2C SCL / ШИМ.
  • 9 – 16 – порты D6-D13, из которых D6 (9й), D9 (12й), D10 (13й) и D11 (14й) используются как выходы ШИМ. D13 (16й пин) – светодиод. Также D10 – SS, D11 – MOSI, D12 – MISO, D13 – SCK используются для связи по интерфейсу SPI.
  • 18 – AREF, это опорное напряжение для АЦП микроконтроллера.
  • 19 – 26: аналоговые входы A0… A7. Разрядность АЦП 10 бит. A4 (SDA), A5 (SCL) – используются для связи по шине I2C. Для создания используется специальная библиотека Wire.

Микроконтроллеры обладают большими функциональными возможностями, но у них есть один недостаток – это ограниченное, по сраyвению с Arduino Mega, число выводов. Поэтому на этапе составления схемы устройства следует продумать, каким образом можно максимально упростить проект, чтобы сократить число нужных для подключения контактов.

Подключение Arduino Nano

Подключение платы Arduino Nano к компьютеру не представляет особого труда – оно аналогично обычной плате Uno. Единственная сложность может возникнуть при работе с платой на базе чипа ATMEGA 168 – в настройках нужно выбрать сперва плату Nano, а затем нужный вариант процессора.

Установка драйвера для CH340

Микросхема CH340 часто используется в платах Ардуино со встроенным USB-to-Serial преобразователем. Она позволяет уменьшить затраты на производство плат, не влияя на ее работоспособность. При помощи этого программатора можно легко прошивать платы Ардуино. Для того, чтобы начать работать с этой микросхемой, нужно установить драйвер на компьютер.

Установка выполняется в несколько этапов:

  • Скачивание архива с драйвером для нужной операционной системы. Для Windows, MacOS и Linux загрузить драйверы можно по ссылке в нашей статье про USB UART.
  • Распаковка архива.
  • Поиск файла SETUP.EXE, его запуск.
  • На мониторе появится окно, в котором нужно нажать кнопку Install. Установка драйвера начнется, после чего можно начинать работу со схемой.

Настройка Arduino IDE

Стандартная среда разработки Arduino IDE используется для работы всех видов Ардуино с компьютером. Чтобы начать работу, нужно сначала скачать Arduino IDE с официального сайта и установить ее. Удобнее скачивать Windows Installer, особенно если среда разработки будет установлена на постоянном рабочем компьютере. Если скачан архив, то его нужно распаковать и запустить файл Arduino.exe.

Как только среда установлена, нужно ее запустить. Для этого нужно подключить к компьютеру саму плату Ардуино через USB. Затем перейти в меню Пуск >> Панель управления >> Диспетчер устройств, найти там Порты COM и LPT. В списке появится установленная плата и указан номер порта, к которому подключается плата.

После этого нужно запустить Arduino IDE, перейти в меню Инструменты >> Порт, и указать порт, к которому присоединена Ардуино. В меня Инструменты>> Платы нужно выбрать модель подключенной платы, в данном случае Arduino Nano. Если у вас плата Nano версии 2.0, то вам нужно также выбрать вариант процессора в соответствующем меню.

Важно помнить, что если к компьютеру будет подключаться другая плата, настройки снова нужно будет поменять на соответствующее устройство.

Примеры проектов с Arduino Nano

Проектов с использованием платы Нано существует огромное количество. По идее, в любой проект для Arduino Uno можно совершенно спокойно внести плату Nano и не придется менять современно ничего в коде. Именно поэтому часто после отладки проекта на “большом и удобном” Uno схему переделывают под нано и используют в рабочем варианте “уменьшенный” контроллер, который легче сделать миниатюрным.

Подключение светодиодов к Arduino Nano

В качестве тестовой программы, проверяющей работу платы, можно использовать мигание светодиодом. На плате имеется встроенный светодиод L, с которым обычно выполняются первые проекты. Но можно подключить и внешний светодиод к выходу D13. Мы, конечно, не забываем, что светодиод обязательно подключать через резистор, чтобы не сжечь его и не повредить плату. Анод светодиода подключается к резистору, который присоединяется к выходу D13. Катод светодиода – к земле. Вот пример схемы:

В Arduino IDE есть пример, который включает мигание светодиода. Для этого нужно перейти в меню Файл>>Образцы>>1. Basics>> Blink и загрузить пример. После выгрузки пода Ардуино будет выполнять программу, мигая светодиодом раз в секунду.

Подключение LCD 1602 к Arduino Nano

Экран LCD 1602 достаточно распространенный, для него существует разнообразные виды шилдов, но также его можно подключить напрямую к Ардуино. Для подключения дисплея к плате нужны Arduino Nano, макетная плата, экран LCD 1602 и соединительные провода.

Выбор пинов, к которым нужно подключать дисплей, может быть любым. Для примера будет выбрана такая конфигурация: контакт RW с дисплея подключается к земле, 4й контакт дисплея – к А0 на Ардуино, 6-й контакт – к Е (Enable), с 11-го по 14-й подключаются к D4-D7. Экран подключен. Для того, чтобы началь писать код, нужно подключить библиотеку LiquidCrystal. В ней также имеется тестовый скетч, который позволит проверить работоспособность установки. Код находится по адресу ArduinolibrariesLiquidCrystalexamplesHelloWorldHelloWorld.ino, в скетче нужно только поменять номера контактов, к которым подключен экран. Если все подключено правильно, на мониторе загорится надпись.

Подключение nrf24l01 к Arduino Nano

Радиомодуль nrf24l01 используется в случаях, когда нужно получать данные от датчиков, которые расположены на удалении от управляющего устройства. Модуль прост в использовании и легко подключается к Ардуино.

Подключение к Ардуино Нано изображено на рисунке. Земля с платы соединяется с землей модуля, напряжение – на 3,3В, 3й контакт (CE) – к D9, с 4 по 7й – к D10-D12. Для 3го контакта и 4-го можно использовать любые пины, главное указать это потом в коде.

К радиомодулю может быть также припаян конденсатор между выходами земля и питание, который позволит уменьшить шумы, и сделает работу устройства более стабильной.

Для работы с модулем существует несколько библиотек. Наиболее распространенные библиотеки – это RF24 и Mirf. Выбор той или иной библиотеки определяется удобством использования.

Обзор популярных шилдов для Arduino Nano

Платы расширения (или arduino shield, шилд) используются для решения различных задач и упрощения проектов. На плате расширения устанавливаются все нужные электронные компоненты, а взаимодействие с другими контроллерами осуществляется через стандартные контакты Ардуино.

Nano Uno shield – это шилд, который позволяет превратить плату Нано в Уно. Платформа имеет различные колодки для подключения, кнопку перезагрузки и гнездо питания.

Arduino Nano Ethernet Shield – используется для обеспечения работы с сетью через Ethernet. Аналогичен такому же шилду для Arduino Uno, но имеет меньшие размеры и гораздо удобнее в реальных проектах.

Arduino Nano Motor Shield – шилд, который используется в робототехнических проектах для подключения моторов и двигателей к плате Ардуино. Его основная задача – обеспечение управления устройствами, которые потребляют большой (по сравнению с Ардуино) ток. Также с помощью шилда можно управлять мощностью мотора и менять его направление вращения. Моделей плат Motor Shield существует множество, у всех имеется в схеме мощный транзистор, теплоотводящие компоненты, схемы для подключения внешнего источника напряжения и разъемы ля подключения двигателей.

Arduino Nano Sensor Shield – самая распространенная платформа. Шилд прост – основной его задачей является обеспечение удобного подключения к плате Ардуино других устройств. На шилде расположены дополнительные разъемы питания и земли, разъемы для подключения внешнего источника напряжения, светодиод и кнопка перезагрузки.

Arduino Data Logging Shield – шилд, который позволяет писать лог данных с датчиков. Также он используется как файловое хранилище или часы реального времени. Для работы с шилдом существует специальная библиотека, которая позволяет логировать информацию на карту памяти.

Arduino Proto Shield – платформа для быстрого прототипирования или создания своего шилда. На этих платах расположены площадки для монтажа нужных компонентов, выведена кнопка сброса, 2 светодиода и разъем для внешнего питания. С их помощью можно повысить компактность устройства.

Итоги

Контроллеры Arduino Nano активно используются в самых разнообразных DIY проектах. Использование миниатюрного контроллера позволяет создавать устройства в небольшом форм-факторе, что является важным для проектов в области автоматизации и робототехники. Эта плата довольно компактная, удобная и обладает всеми возможностями “большой Uno”. Можно рекомендовать ее к использованию даже начинающим ардуинщикам.

Ссылка на основную публикацию
Стоит ли учиться на нефтяника
Добыча газа и нефти — очень популярная сфера в России. Именно поэтому большое количество выпускников стремится поступать на специальность «Нефтегазовое...
Сони плейстейшен нетворк вход
Игры по сети, развлечения, друзья, покупки и многое другое – ваше сетевое приключение начинается в PSN. Подключитесь к нашему сетевому...
Сони f3112 xperia xa
Недорогой смартфон компании Sony (22 990 рублей за Dual версию) с интересным дизайном, LTE, двумя отдельными слотами для SIM-карт, слотом...
Стойка для аудио аппаратуры своими руками
Решил создать данную тему,т.к. думаю форумчанам будет интересно почитать, а кому то и поделиться личным опытом, по изготовлению своими руками...
Adblock detector