Энергия заряженного шара формула

Энергия заряженного шара формула

1.Энергия системы точечных зарядов


Можно говорить, что эта энергия взаимодействия двух точечных зарядов, находящихся на расстоянии . Если заряды одноименные, то эта энергия положительна. Если разноименные, то отрицательна.

Пусть поле создано двумя зарядами q1 и q2 и в нем перемещается заряд q3. Рассуждая аналогично, можно показать, что энергия этого третьего заряда равна


Если к этому заряду добавить энергию второго заряда в поле первого, то полная энергия системы этих зарядов равна

Из симметрии формулы видно, что не имеет значения, в каком порядке собиралась данная система. Можно говорить, что эта энергия любого заряда в поле двух других. Однако нельзя считать, что эта энергия принадлежит к какому-то одному из зарядов. Поэтому чаще говорят, что это потенциальная энергия взаимодействия заряда. Она не зависит от того, как собиралась эта система, а зависит только от взаимного расположения зарядов.

В данном выражении не учитывается собственная энергия каждого точечного заряда, как уединенного объекта, т.е. та энергия, которая необходима, чтобы упаковать порции заряда в нулевой объем. Очевидно, что данная энергия бесконечна. Эту энергию достаточно сложно изменить. Поэтому, можно считать, что это величина постоянная, а так как потенциальная энергия определена с точностью до постоянной, то в энергии взаимодействия её можно не учитывать.

Обобщая выше сказанное, можно записать, что энергия взаимодействия системы точечных зарядов







2.Энергия заряженного тела

Переходя от дискретного распределения зарядов к непрерывному, из формулы (*) получаем

Если заряженное тело имеет объём, то

Данное выражение по смыслу отличается от аналогичного для точечных зарядов (*), т.к. здесь собственная энергия уже учитывается.

3.Энергия заряженной сферы




4.Энергия заряженного конденсатора

Данный простой эксперимент показывает, что заряженный конденсатор обладает энергией.

Когда речь идет о конденсаторе, часто используется понятие напряжения.

В электростатике понятие разности потенциалов и напряжения совпадают.


5.Энергия заряженной сферы

Исходя из выражения для ёмкости уединенного шара , получаем выражения для энергии:

6.Энергия поля

Когда речь идет о заряженном конденсаторе, возникает вопрос: полученная энергия – это энергия зарядов на пластинах конденсатора или энергия поля, сосредоточенного между пластинами конденсатора. В рамках электростатики на данный вопрос ответить нельзя, т.к. нет поля без заряда. Ответ будет дан при изучении электродинамики, а здесь выразим полученную ранее энергию через характеристики поля, на примере плоского конденсатора.

Читайте также:  Как починить внешний жесткий диск


Обобщая полученное выражение можно записать, что энергия электростатического поля в некотором объёме равна:


Здесь w –объёмная плотность энергии.

7.Энергия заряженной сферы



8.Классический радиус электрона

Найдем энергию заряженного шара.

Энергию поля снаружи можно найти по формуле


Аналогично рассчитаем энергию поля внутри шара

Таким образом, полная энергия

Если в качестве шара рассматривать электрон в вакууме, то тогда

На этом изучение раздела «электростатика» закончим.

Потенциальная энергия заряда в электрическом поле. Работу, совершаемую силами электрического поля при перемещении положительного точечного заряда q из положения 1 в положение 2, представим как изменение потенциальной энергии этого заряда:

где W п1 и W п2 – потенциальные энергии заряда q в положениях 1 и 2. При малом перемещении заряда q в поле, создаваемом положительным точечным зарядом Q , изменение потенциальной энергии равно

.

При конечном перемещении заряда q из положения 1 в положение 2, находящиеся на расстояниях r 1 и r 2 от заряда Q ,

Если поле создано системой точечных зарядов Q 1 , Q 2 ,¼, Q n , то изменение потенциальной энергии заряда q в этом поле:

.

Приведённые формулы позволяют найти только изменение потенциальной энергии точечного заряда q , а не саму потенциальную энергию. Для определения потенциальной энергии необходимо условиться, в какой точке поля считать ее равной нулю. Для потенциальной энергии точечного заряда q , находящегося в электрическом поле, созданном другим точечным зарядом Q , получим

,

где C – произвольная постоянная. Пусть потенциальная энергия равна нулю на бесконечно большом расстоянии от заряда Q (при r ® ¥), тогда постоянная C = 0 и предыдущее выражение принимает вид

При этом потенциальная энергия определяется как работа перемещения заряда силами поля из данной точки в бесконечно удаленную . В случае электрического поля, создаваемого системой точечных зарядов, потенциальная энергия заряда q :

.

Потенциальная энергия системы точечных зарядов. В случае электростатического поля потенциальная энергия служит мерой взаимодействия зарядов. Пусть в пространстве существует система точечных зарядов Q i (i = 1, 2, . ,n ). Энергия взаимодействия всех n зарядов определится соотношением

Читайте также:  Срок службы ноутбука самсунг

,

где r ij расстояние между соответствующими зарядами, а суммирование производится таким образом, чтобы взаимодействие между каждой парой зарядов учитывалось один раз.

Потенциал электростатического поля. Поле консервативной силы может быть описано не только векторной функцией, но эквивалентное описание этого поля можно получить, определив в каждой его точке подходящую скалярную величину. Для электростатического поля такой величиной является потенциал электростатического поля , определяемый как отношение потенциальной энергии пробного заряда q к величине этого заряда, j = W п / q , откуда следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд. Единицей измерения потенциала служит Вольт (1 В).

Потенциал поля точечного заряда Q в однородной изотропной среде с диэлектрической проницаемостью e:

3. НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ. Количественной характеристикой силового действия электрического поля на заряженные тела служит векторная величина E , называемая напряжённостью электрического поля .

Она определяется отношением силы F , действующей со стороны поля на точечный пробный заряд q пр, помещенный в рассматриваемую точку поля, к величине этого заряда.

Понятие «пробный заряд» предполагает, что этот заряд не участвует в создании электрического поля и так мал, что не искажает его, т. е. не вызывает перераспределения в пространстве зарядов, создающих рассматриваемое поле. В системе СИ единицей напряженности служит 1 В / м, что эквивалентно 1 Н / Кл.

Электрическое поле. Для объяснения природы электрических взаимодействий заряженных тел необходимо допустить наличие в окружающем заряды пространстве физического агента, осуществляющего это взаимодействие. В соответствии с теорией близкодействия , утверждающей, что силовые взаимодействия между телами осуществляются через посредство особой материальной среды, окружающей взаимодействующие тела и передающей любые изменения таких взаимодействий в пространстве с конечной скоростью, таким агентом является электрическое поле .

Электрическое поле создается как неподвижными, так и движущимися зарядами. О наличии электрического поля можно судить, прежде всего, по его способности оказывать силовое действие на электрические заряды, движущиеся и неподвижные, а также по способности индуцировать электрические заряды на поверхности проводящих нейтральных тел.

Поле, создаваемое неподвижными электрическими зарядами, называют стационарным электрическим , или электростатическим полем. Оно представляет собой частный случай электромагнитного поля , посредством которого осуществляются силовые взаимодействия между электрически заряженными телами, движущимся в общем случае произвольным образом относительно системы отсчета.

Читайте также:  Asus n6600 td 128m a

Напряженность поля точечного заряда. Используя закон Кулона (1.1) найдем выражение для напряжённости электрического поля, создаваемого точечным зарядом q в однородной изотропной среде на расстоянии r от заряда:

(1.2)

В этой формуле r – радиус-вектор, соединяющий заряды q и q пр. Из (1.2) следует, что напряжённость E поля точечного заряда q во всех точках поля направлена радиально от заряда при q > 0 и к заряду при q 0, то вектор напряженности направлен от заряда, если Q

Пользуясь тем, что гауссова поверхность (в законе Гаусса) произвольная, выберем её в виде концентрической сферы, с заряженным шаром. В силу симметрии, на всей гауссовой поверхности электрическое поле будет одинаково.

Выносим его из под знака интеграла в законе Гаусса:

То есть — вне шара такое же поле, как от точечного заряда.

Для нахождения поля вне шара не важно, как распределён заряд внутри шара — по поверхности, или по объёму; лишь бы симметрично.

Потенциал от заряженного шара вычислим через электрическое поле, при этом удобно ноль потенциала установить на бесконечности. Общая формула для потенциала всевозможных шаров (полых, сплошных):

Подставляя вместо E найденные значения, получим:

· любой шар, потенциал вне шара (такой же, как от точечного заряда):

· внутри полого шара потенциал не меняется (R — радиус шара):

· внутри заряженного равномерно по объёму сплошного шара:

Графики полей и потенциалов имеют вид:

· Полый шар (заряд на поверхности):

· Сплошной шар, равномерно заряженный по объёму:

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: "Что-то тут концом пахнет". 8526 — | 8113 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Ссылка на основную публикацию
Adblock detector