Формула алгебраического дополнения матрицы

Формула алгебраического дополнения матрицы

Определение . Алгебраическим дополнением элемента ai j определителя D называется его минор, взятый со знаком (-1) i+j .
Алгебраическое дополнение элемента ai j обозначается через Ai j . Следовательно, Ai j = (-1) i+j Mi j .

  • Ввод данных
  • Видеоинструкция

Пример . Дан определитель . Найти минор и алгебраическое дополнение элемента a2 1 (выделен пунктиром).
Решение. Вычеркивая в определителе первую строку и второй столбец, на пересечении которых находится элемент a2 1 , получим . Тогда A2 1 = (-1) 1+2 M2 1 = -14.
Теорема. Определитель равен сумме произведений элементов какой-нибудь строки или столбца на их алгебраические дополнения, т.е.
D=a i 1·A i 1+a i 2·A i 2+ . + a i n·A i n (*)
где i – фиксировано.
Выражение (*) называют разложением определителя D по элементам строки с номером i.
Вычисление определителя n -го порядка сводится к вычислению одного определителя ( n-1 )-го порядка, для чего в какой–либо строке (или столбце) получают ( n -1) нулей, а затем разлагают определитель по этой строке, пользуясь формулой (*).

Пример . Найти алгебраические дополнения для матрицы:

Решение находим с помощью калькулятора. Найдем главный определитель.
∆ = 0.73 ∙(0.72 ∙0.92 -(-0.17 ∙(-0.15 )))-(-0.19 ∙(-0.07 ∙0.92 -(-0.17 ∙(-0.12 ))))+(-0.12 ∙(-0.07 ∙(-0.15 )-0.72 ∙(-0.12 ))) = 0.437197
Транспонированная матрица

Алгебраические дополнения

В данной теме рассмотрим понятия алгебраического дополнения и минора. Изложение материала опирается на термины, пояснённые в теме "Матрицы. Виды матриц. Основные термины". Также нам понадобятся некоторые формулы для вычисления определителей. Так как в данной теме немало терминов, относящихся к минорам и алгебраическим дополнениям, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Минор $M_$ элемента $a_$

Пусть задана квадратная матрица $A_$ (т.е. квадратная матрица n-го порядка).

Для примера рассмотрим квадратную матрицу четвёртого порядка: $A=left( egin 1 & 0 & -3 & 9\ 2 & -7 & 11 & 5 \ -9 & 4 & 25 & 84\ 3 & 12 & -5 & 58 end
ight)$. Найдём минор элемента $a_<32>$, т.е. найдём $M_<32>$. Сперва запишем минор $M_<32>$, а потом вычислим его значение. Для того, чтобы составить $M_<32>$, вычеркнем из матрицы $A$ третью строку и второй столбец (именно на пересечении третьей строки и второго столбца расположен элемент $a_<32>$). Мы получим новую матрицу, определитель которой и есть искомый минор $M_<32>$:

Этот минор несложно вычислить, используя формулу №2 из темы вычисления определителей второго и третьего порядков:

$$ M_<32>=left| egin 1 & -3 & 9\ 2 & 11 & 5 \ 3 & -5 & 58 end
ight|= 1cdot 11cdot 58+(-3)cdot 5cdot 3+2cdot (-5)cdot 9-9cdot 11cdot 3-(-3)cdot 2cdot 58-5cdot (-5)cdot 1=579. $$

Итак, минор элемента $a_<32>$ равен 579, т.е. $M_<32>=579$.

Часто вместо словосочетания "минор элемента матрицы" в литературе встречается "минор элемента определителя". Суть остается неизменной: чтобы получить минор элемента $a_$ нужно вычеркнуть из исходного определителя i-ю строку и j-й столбец. Оставшиеся элементы записывают в новый определитель, который и является минором элемента $a_$. Например, найдём минор элемента $a_<12>$ определителя $left| egin -1 & 3 & 2\ 9 & 0 & -5 \ 4 & -3 & 7 end
ight|$. Чтобы записать требуемый минор $M_<12>$ нам понадобится вычеркнуть из заданного определителя первую строку и второй столбец:

Чтобы найти значение данного минора используем формулу №1 из темы вычисления определителей второго и третьего порядков:

$$ M_<12>=left| egin 9 & -5\ 4 & 7 end
ight|=9cdot 7-(-5)cdot 4=83. $$

Читайте также:  Asus rt n12 настройка pppoe

Итак, минор элемента $a_<12>$ равен 83, т.е. $M_<12>=83$.

Алгебраическое дополнение $A_$ элемента $a_$

Пусть задана квадратная матрица $A_$ (т.е. квадратная матрица n-го порядка).

где $M_$ – минор элемента $a_$.

Найдем алгебраическое дополнение элемента $a_<32>$ матрицы $A=left( egin 1 & 0 & -3 & 9\ 2 & -7 & 11 & 5 \ -9 & 4 & 25 & 84\ 3 & 12 & -5 & 58 end
ight)$, т.е. найдём $A_<32>$. Ранее мы уже находили минор $M_<32>=579$, поэтому используем полученный результат:

Обычно при нахождении алгебраических дополнений не вычисляют отдельно минор, а уж потом само дополнение. Запись минора опускают. Например, найдем $A_<12>$, если $A=left( egin -5 & 10 & 2\ 6 & 9 & -4 \ 4 & -3 & 1 end
ight)$. Согласно формуле $A_<12>=(-1)^<1+2>cdot M_<12>=-M_<12>$. Однако чтобы получить $M_<12>$ достаточно вычеркнуть первую строку и второй столбец матрицы $A$, так зачем же вводить лишнее обозначение для минора? Сразу запишем выражение для алгебраического дополнения $A_<12>$:

Минор k-го порядка матрицы $A_$

Если в предыдущих двух пунктах мы говорили лишь о квадратных матрицах, то здесь поведём речь также и о прямоугольных матрицах, у которых количество строк вовсе не обязательно равняется количеству столбцов. Итак, пусть задана матрица $A_$, т.е. матрица, содержащая m строк и n столбцов.

Например, рассмотрим такую матрицу:

$$A=left( egin -1 & 0 & -3 & 9\ 2 & 7 & 14 & 6 \ 15 & -27 & 18 & 31\ 0 & 1 & 19 & 8\ 0 & -12 & 20 & 14\ 5 & 3 & -21 & 9\ 23 & -10 & -5 & 58 end
ight) $$

Запишем для неё какой-либо минор третьего порядка. Чтобы записать минор третьего порядка нам потребуется выбрать какие-либо три строки и три столбца данной матрицы. Например, возьмём строки №2, №4, №6 и столбцы №1, №2, №4. На пересечении этих строк и столбцов будут располагаться элементы требуемого минора. На рисунке элементы минора показаны синим цветом:

Миноры первого порядка находятся на пересечении одной строки и одного столбца, т.е. миноры первого порядка равны элементам заданной матрицы.

Напомню, что главными диагональными элементами именуют те элементы матрицы, у которых индексы равны: $a_<11>$, $a_<22>$, $a_<33>$ и так далее. Например, для рассмотренной выше матрицы $A$ такими элементами будут $a_<11>=-1$, $a_<22>=7$, $a_<33>=18$, $a_<44>=8$. На рисунке они выделены зелёным цветом:

$$left( egin oldgreen <-1>& 0 & -3 & 9\ 2 & oldgreen <7>& 14 & 6 \ 15 & -27 & oldgreen <18>& 31\ 0 & 1 & 19 & oldgreen<8>\ 0 & -12 & 20 & 14\ 5 & 3 & -21 & 9\ 23 & -10 & -5 & 58 end
ight) $$

Например, если в матрице $A$ мы вычеркнем строки и столбцы с номерами 1 и 3, то на их пересечении будут расположены элементы минора второго порядка, на главной диагонали которого будут находиться только диагональные элементы матрицы $A$ (элементы $a_<11>=-1$ и $a_<33>=18$ матрицы $A$). Следовательно, мы получим главный минор второго порядка:

$$ M=left|egin oldgreen <-1>& -3 \ 15 & oldgreen <18>end
ight| $$

Естественно, что мы могли взять иные строки и столбцы, – например, с номерами 2 и 4, получив при этом иной главный минор второго порядка.

Читайте также:  Как вырезать фрагмент из pdf файла

Для примера рассмотрим такую матрицу:

$$A=left( egin -1 & 0 & 3 & 0 & 0 \ 2 & 0 & 4 & 1 & 0\ 1 & 0 & -2 & -1 & 0\ 0 & 0 & 0 & 0 & 0 end
ight) $$

Запишем минор этой матрицы, элементы которого расположены на пересечении строк №1, №2, №3 и столбцов с №1, №3, №4. Мы получим минор третьего порядка (его элементы выделены в матрице $A$ фиолетовым цветом):

Найдём значение этого минора, используя формулу №2 из темы вычисления определителей второго и третьего порядков:

$$ M=left| egin -1 & 3 & 0\ 2 & 4 & 1 \ 1 & -2 & -1 end
ight|=4+3+6-2=11. $$

Итак, $M=11
eq 0$. Теперь попробуем составить любой минор, порядок которого выше трёх. Чтобы составить минор четвёртого порядка, нам придётся использовать четвёртую строку, однако все элементы этой строки равны нулю. Следовательно, в любом миноре четвёртого порядка будет нулевая строка, а это означает, что все миноры четвёртого порядка равны нулю. Миноры пятого и более высоких порядков составить мы не можем, так как матрица $A$ имеет всего 4 строки.

Мы нашли минор третьего порядка, не равный нулю. При этом все миноры высших порядков равны нулю, следовательно, рассмотренный нами минор – базисный. Строки матрицы $A$, на которых расположены элементы этого минора (первая, вторая и третья), – базисные строки, а первый, третий и четвёртый столбцы матрицы $A$ – базисные столбцы.

Данный пример, конечно, тривиальный, так как его цель – наглядно показать суть базисного минора. Вообще, базисных миноров может быть несколько, и обычно процесс поиска такого минора куда сложнее и объёмнее.

Введём ещё одно понятие – окаймляющий минор.

Для примера обратимся к такой матрице:

$$A=left( egin -1 & 2 & 0 & -2 & -14\ 3 & -17 & -3 & 19 & 29\ 5 & -6 & 8 & -9 & 41\ -5 & 11 & 19 & -20 & -98\ 6 & 12 & 20 & 21 & 54\ -7 & 10 & 14 & -36 & 79 end
ight) $$

Запишем минор второго порядка, элементы которого расположены на пересечении строк №2 и №5, а также столбцов №2 и №4. Эти элементы выделены в матрице красным цветом:

Добавим к набору строк, на которых лежат элементы минора $M$, ещё строку №1, а к набору столбцов – столбец №5. Получим новый минор $M’$ (уже третьего порядка), элементы которого расположены на пересечении строк №1, №2, №5 и столбцов №2, №4, №5. Элементы минора $M$ на рисунке выделены красным цветом, а элементы, которые мы добавляем к минору $M$ – синим:

Минор $M’$ является окаймляющим минором для минора $M$. Аналогично, добавляя к набору строк, на которых лежат элементы минора $M$, строку №4, а к набору столбцов – столбец №3, получим минор $M»$ (минор третьего порядка):

Минор $M»$ также является окаймляющим минором для минора $M$.

Минор k-го порядка матрицы $A_$. Дополнительный минор. Алгебраическое дополнение к минору квадратной матрицы.

Вновь вернёмся к квадратным матрицам. Введём понятие дополнительного минора.

Читайте также:  Ascii таблица символов пробел

Для примера рассмотрим квадратную матрицу пятого порядка:

$$ A=left( egin -1 & 2 & 0 & -2 & -14\ 3 & -17 & -3 & 19 & 29\ 5 & -6 & 8 & -9 & 41\ -5 & 11 & 16 & -20 & -98\ -7 & 10 & 14 & -36 & 79 end
ight) $$

Выберем в ней строки №1 и №3, а также столбцы №2 и №5. На пересечении оных строк и столбцов будут элементы минора $M$ второго порядка. Эти элементы выделены в матрице $A$ зелёным цветом:

Теперь уберём из матрицы $A$ строки №1 и №3 и столбцы №2 и №5, на пересечении которых находятся элементы минора $M$ (элементы убираемых строк и столбцов показаны красным цветом на рисунке ниже). Оставшиеся элементы образуют минор $M’$:

Минор $M’$, порядок которого равен $5-2=3$, является минором, дополнительным к минору $M$.

Словосочетание "алгебраическое дополнение к минору $M$" часто заменяют словосочетанием "алгебраическое дополнение минора $M$".

Для примера рассмотрим матрицу $A$, для которой мы находили минор второго порядка $ M=left| egin 2 & -14 \ -6 & 41 end
ight| $ и дополнительный к нему минор третьего порядка: $M’=left| egin
3 & -3 & 19\ -5 & 16 & -20 \ -7 & 14 & -36 end
ight|$. Обозначим алгебраическое дополнение минора $M$ как $M^*$. Тогда согласно определению:

Параметр $alpha$ равен сумме номеров строк и столбцов, на которых находится минор $M$. Этот минор расположен на пересечении строк №1, №3 и столбцов №2, №5. Следовательно, $alpha=1+3+2+5=11$. Итак:

$$ M^*=(-1)^<11>cdot M’=-left| egin 3 & -3 & 19\ -5 & 16 & -20 \ -7 & 14 & -36 end
ight|. $$

В принципе, используя формулу №2 из темы вычисления определителей второго и третьего порядков, можно довести вычисления до конца, получив значение $M^*$:

$$ M^*=-left| egin 3 & -3 & 19\ -5 & 16 & -20 \ -7 & 14 & -36 end
ight|=-30. $$

Для того что бы найти обратную матрицу можно использовать два метода: с помощью алгебраических дополнений (метод присоединённой (союзной) матрицы) или элементарных преобразований (метод Жордано-Гаусса). Рассмотрим как найти обратную матрицу с помощью алгебраических дополнений.

Обратной матрицей называется матрицы A -1 при умножении на исходную матрицу A получается единичная матрица E.

Алгоритм нахождения обратной матрицы с помощью алгебраических дополнений:

  1. Найти определитель (детерминант) матрицы A. Если определитель ≠ 0, то обратная матрица существует. Если определитель = 0, то обратная матрица не существует.
  2. Найти матрицу миноров M.
  3. Из матрицы M найти матрицу алгебраических дополнений C * .
  4. Транспонировать матрицу (поменяем местами строки со столбцами) C * , получить матрицу C *T .
  5. По формуле найти обратную матрицу.

Пример

Рассмотрим данный метод на примере. Дана матрицы 3х3:

Найдем минор M11 и алгебраическое дополнение A11. В матрице А вычеркиваем строку 1 и столбец 1.

Найдем минор M12 и алгебраическое дополнение A12. В матрице А вычеркиваем строку 1 и столбец 2.

Остальные миноры и алгебраические дополнения находятся аналогично. В итоге получаем матрицу C * .

Найдем транспонированную союзную матрицу алгебраических дополнений C *T .

Ссылка на основную публикацию
Файл cms что это
Файлы формата CMS открываются специальными программами. Существует 2 типа форматов CMS, каждый из которых открывается разными программами. Чтобы открыть нужный...
Унитаз лира киров отзывы
Сырье также используется импортное, тщательно отобранное и экологически чистое — глина, гипс, каолин, полевой шпат, красители. Гарантия на производимые компанией...
Унитаз ресса киров отзывы
Мы предлагаем унитазы росссийского производителя Роза (Киров). В нашем каталоге собрано 30 моделей по цене от 3 090р. Перейдите по...
Файл менеджер для windows 10 на русском
Менеджер файлов осуществляет просмотр, копирование, управление медиафайлами и папками на персональном компьютере. Он предоставляет функцию быстрого перемещения объектов для ускорения...
Adblock detector