Что называется минором элемента матрицы

Что называется минором элемента матрицы

В данной теме рассмотрим понятия алгебраического дополнения и минора. Изложение материала опирается на термины, пояснённые в теме "Матрицы. Виды матриц. Основные термины". Также нам понадобятся некоторые формулы для вычисления определителей. Так как в данной теме немало терминов, относящихся к минорам и алгебраическим дополнениям, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Минор $M_$ элемента $a_$

Пусть задана квадратная матрица $A_$ (т.е. квадратная матрица n-го порядка).

Для примера рассмотрим квадратную матрицу четвёртого порядка: $A=left( egin 1 & 0 & -3 & 9\ 2 & -7 & 11 & 5 \ -9 & 4 & 25 & 84\ 3 & 12 & -5 & 58 end
ight)$. Найдём минор элемента $a_<32>$, т.е. найдём $M_<32>$. Сперва запишем минор $M_<32>$, а потом вычислим его значение. Для того, чтобы составить $M_<32>$, вычеркнем из матрицы $A$ третью строку и второй столбец (именно на пересечении третьей строки и второго столбца расположен элемент $a_<32>$). Мы получим новую матрицу, определитель которой и есть искомый минор $M_<32>$:

Этот минор несложно вычислить, используя формулу №2 из темы вычисления определителей второго и третьего порядков:

$$ M_<32>=left| egin 1 & -3 & 9\ 2 & 11 & 5 \ 3 & -5 & 58 end
ight|= 1cdot 11cdot 58+(-3)cdot 5cdot 3+2cdot (-5)cdot 9-9cdot 11cdot 3-(-3)cdot 2cdot 58-5cdot (-5)cdot 1=579. $$

Итак, минор элемента $a_<32>$ равен 579, т.е. $M_<32>=579$.

Часто вместо словосочетания "минор элемента матрицы" в литературе встречается "минор элемента определителя". Суть остается неизменной: чтобы получить минор элемента $a_$ нужно вычеркнуть из исходного определителя i-ю строку и j-й столбец. Оставшиеся элементы записывают в новый определитель, который и является минором элемента $a_$. Например, найдём минор элемента $a_<12>$ определителя $left| egin -1 & 3 & 2\ 9 & 0 & -5 \ 4 & -3 & 7 end
ight|$. Чтобы записать требуемый минор $M_<12>$ нам понадобится вычеркнуть из заданного определителя первую строку и второй столбец:

Чтобы найти значение данного минора используем формулу №1 из темы вычисления определителей второго и третьего порядков:

$$ M_<12>=left| egin 9 & -5\ 4 & 7 end
ight|=9cdot 7-(-5)cdot 4=83. $$

Итак, минор элемента $a_<12>$ равен 83, т.е. $M_<12>=83$.

Алгебраическое дополнение $A_$ элемента $a_$

Пусть задана квадратная матрица $A_$ (т.е. квадратная матрица n-го порядка).

где $M_$ – минор элемента $a_$.

Найдем алгебраическое дополнение элемента $a_<32>$ матрицы $A=left( egin 1 & 0 & -3 & 9\ 2 & -7 & 11 & 5 \ -9 & 4 & 25 & 84\ 3 & 12 & -5 & 58 end
ight)$, т.е. найдём $A_<32>$. Ранее мы уже находили минор $M_<32>=579$, поэтому используем полученный результат:

Обычно при нахождении алгебраических дополнений не вычисляют отдельно минор, а уж потом само дополнение. Запись минора опускают. Например, найдем $A_<12>$, если $A=left( egin -5 & 10 & 2\ 6 & 9 & -4 \ 4 & -3 & 1 end
ight)$. Согласно формуле $A_<12>=(-1)^<1+2>cdot M_<12>=-M_<12>$. Однако чтобы получить $M_<12>$ достаточно вычеркнуть первую строку и второй столбец матрицы $A$, так зачем же вводить лишнее обозначение для минора? Сразу запишем выражение для алгебраического дополнения $A_<12>$:

Минор k-го порядка матрицы $A_$

Если в предыдущих двух пунктах мы говорили лишь о квадратных матрицах, то здесь поведём речь также и о прямоугольных матрицах, у которых количество строк вовсе не обязательно равняется количеству столбцов. Итак, пусть задана матрица $A_$, т.е. матрица, содержащая m строк и n столбцов.

Например, рассмотрим такую матрицу:

$$A=left( egin -1 & 0 & -3 & 9\ 2 & 7 & 14 & 6 \ 15 & -27 & 18 & 31\ 0 & 1 & 19 & 8\ 0 & -12 & 20 & 14\ 5 & 3 & -21 & 9\ 23 & -10 & -5 & 58 end
ight) $$

Запишем для неё какой-либо минор третьего порядка. Чтобы записать минор третьего порядка нам потребуется выбрать какие-либо три строки и три столбца данной матрицы. Например, возьмём строки №2, №4, №6 и столбцы №1, №2, №4. На пересечении этих строк и столбцов будут располагаться элементы требуемого минора. На рисунке элементы минора показаны синим цветом:

Миноры первого порядка находятся на пересечении одной строки и одного столбца, т.е. миноры первого порядка равны элементам заданной матрицы.

Напомню, что главными диагональными элементами именуют те элементы матрицы, у которых индексы равны: $a_<11>$, $a_<22>$, $a_<33>$ и так далее. Например, для рассмотренной выше матрицы $A$ такими элементами будут $a_<11>=-1$, $a_<22>=7$, $a_<33>=18$, $a_<44>=8$. На рисунке они выделены зелёным цветом:

Читайте также:  Java чем отличается public от public void

$$left( egin oldgreen <-1>& 0 & -3 & 9\ 2 & oldgreen <7>& 14 & 6 \ 15 & -27 & oldgreen <18>& 31\ 0 & 1 & 19 & oldgreen<8>\ 0 & -12 & 20 & 14\ 5 & 3 & -21 & 9\ 23 & -10 & -5 & 58 end
ight) $$

Например, если в матрице $A$ мы вычеркнем строки и столбцы с номерами 1 и 3, то на их пересечении будут расположены элементы минора второго порядка, на главной диагонали которого будут находиться только диагональные элементы матрицы $A$ (элементы $a_<11>=-1$ и $a_<33>=18$ матрицы $A$). Следовательно, мы получим главный минор второго порядка:

$$ M=left|egin oldgreen <-1>& -3 \ 15 & oldgreen <18>end
ight| $$

Естественно, что мы могли взять иные строки и столбцы, – например, с номерами 2 и 4, получив при этом иной главный минор второго порядка.

Для примера рассмотрим такую матрицу:

$$A=left( egin -1 & 0 & 3 & 0 & 0 \ 2 & 0 & 4 & 1 & 0\ 1 & 0 & -2 & -1 & 0\ 0 & 0 & 0 & 0 & 0 end
ight) $$

Запишем минор этой матрицы, элементы которого расположены на пересечении строк №1, №2, №3 и столбцов с №1, №3, №4. Мы получим минор третьего порядка (его элементы выделены в матрице $A$ фиолетовым цветом):

Найдём значение этого минора, используя формулу №2 из темы вычисления определителей второго и третьего порядков:

$$ M=left| egin -1 & 3 & 0\ 2 & 4 & 1 \ 1 & -2 & -1 end
ight|=4+3+6-2=11. $$

Итак, $M=11
eq 0$. Теперь попробуем составить любой минор, порядок которого выше трёх. Чтобы составить минор четвёртого порядка, нам придётся использовать четвёртую строку, однако все элементы этой строки равны нулю. Следовательно, в любом миноре четвёртого порядка будет нулевая строка, а это означает, что все миноры четвёртого порядка равны нулю. Миноры пятого и более высоких порядков составить мы не можем, так как матрица $A$ имеет всего 4 строки.

Мы нашли минор третьего порядка, не равный нулю. При этом все миноры высших порядков равны нулю, следовательно, рассмотренный нами минор – базисный. Строки матрицы $A$, на которых расположены элементы этого минора (первая, вторая и третья), – базисные строки, а первый, третий и четвёртый столбцы матрицы $A$ – базисные столбцы.

Данный пример, конечно, тривиальный, так как его цель – наглядно показать суть базисного минора. Вообще, базисных миноров может быть несколько, и обычно процесс поиска такого минора куда сложнее и объёмнее.

Введём ещё одно понятие – окаймляющий минор.

Для примера обратимся к такой матрице:

$$A=left( egin -1 & 2 & 0 & -2 & -14\ 3 & -17 & -3 & 19 & 29\ 5 & -6 & 8 & -9 & 41\ -5 & 11 & 19 & -20 & -98\ 6 & 12 & 20 & 21 & 54\ -7 & 10 & 14 & -36 & 79 end
ight) $$

Запишем минор второго порядка, элементы которого расположены на пересечении строк №2 и №5, а также столбцов №2 и №4. Эти элементы выделены в матрице красным цветом:

Добавим к набору строк, на которых лежат элементы минора $M$, ещё строку №1, а к набору столбцов – столбец №5. Получим новый минор $M’$ (уже третьего порядка), элементы которого расположены на пересечении строк №1, №2, №5 и столбцов №2, №4, №5. Элементы минора $M$ на рисунке выделены красным цветом, а элементы, которые мы добавляем к минору $M$ – синим:

Минор $M’$ является окаймляющим минором для минора $M$. Аналогично, добавляя к набору строк, на которых лежат элементы минора $M$, строку №4, а к набору столбцов – столбец №3, получим минор $M»$ (минор третьего порядка):

Минор $M»$ также является окаймляющим минором для минора $M$.

Минор k-го порядка матрицы $A_$. Дополнительный минор. Алгебраическое дополнение к минору квадратной матрицы.

Вновь вернёмся к квадратным матрицам. Введём понятие дополнительного минора.

Для примера рассмотрим квадратную матрицу пятого порядка:

$$ A=left( egin -1 & 2 & 0 & -2 & -14\ 3 & -17 & -3 & 19 & 29\ 5 & -6 & 8 & -9 & 41\ -5 & 11 & 16 & -20 & -98\ -7 & 10 & 14 & -36 & 79 end
ight) $$

Читайте также:  Name is not valid перевод

Выберем в ней строки №1 и №3, а также столбцы №2 и №5. На пересечении оных строк и столбцов будут элементы минора $M$ второго порядка. Эти элементы выделены в матрице $A$ зелёным цветом:

Теперь уберём из матрицы $A$ строки №1 и №3 и столбцы №2 и №5, на пересечении которых находятся элементы минора $M$ (элементы убираемых строк и столбцов показаны красным цветом на рисунке ниже). Оставшиеся элементы образуют минор $M’$:

Минор $M’$, порядок которого равен $5-2=3$, является минором, дополнительным к минору $M$.

Словосочетание "алгебраическое дополнение к минору $M$" часто заменяют словосочетанием "алгебраическое дополнение минора $M$".

Для примера рассмотрим матрицу $A$, для которой мы находили минор второго порядка $ M=left| egin 2 & -14 \ -6 & 41 end
ight| $ и дополнительный к нему минор третьего порядка: $M’=left| egin
3 & -3 & 19\ -5 & 16 & -20 \ -7 & 14 & -36 end
ight|$. Обозначим алгебраическое дополнение минора $M$ как $M^*$. Тогда согласно определению:

Параметр $alpha$ равен сумме номеров строк и столбцов, на которых находится минор $M$. Этот минор расположен на пересечении строк №1, №3 и столбцов №2, №5. Следовательно, $alpha=1+3+2+5=11$. Итак:

$$ M^*=(-1)^<11>cdot M’=-left| egin 3 & -3 & 19\ -5 & 16 & -20 \ -7 & 14 & -36 end
ight|. $$

В принципе, используя формулу №2 из темы вычисления определителей второго и третьего порядков, можно довести вычисления до конца, получив значение $M^*$:

$$ M^*=-left| egin 3 & -3 & 19\ -5 & 16 & -20 \ -7 & 14 & -36 end
ight|=-30. $$

Миноры матрицы

Пусть дана квадратная матрица А, n — ого порядка. Минором некоторого элемента аij , определителя матрицы n — ого порядка называется определитель (n — 1) — ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент аij. Обозначается Мij.

Рассмотрим на примере определителя матрицы 3 — его порядка:

, тогда согласно определению минора, минором М12, соответствующим элементу а12, будет определитель:

При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы. Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 — его порядка будет выглядеть так:

, знак перед произведением равен (-1) n , где n = i + j.

Алгебраические дополнения:

Алгебраическим дополнением элемента аij называется его минор, взятый со знаком "+", если сумма (i + j) четное число, и со знаком "-", если эта сумма нечетное число. Обозначается Аij. Аij = (-1) i+j × Мij.

Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения. Пример:

4. Обратная матрица и её вычисление.

Пусть А — квадратная матрица n — ого порядка.

Квадратная матрица А называется невырожденной, если определитель матрицы (Δ = det A) не равен нулю (Δ = det A ≠ 0). В противном случае (Δ = 0) матрица А называется вырожденной.

Матрицей, союзной к матрице А, называется матрица

, где Аijалгебраическое дополнение элемента аij данной матрицы (оно определяется так же, как и алгебраическое дополнение элемента определителя матрицы).

Матрица А -1 называется обратной матрице А, если выполняется условие: А × А -1 = А -1 × А = Е , где Е — единичная матрица того же порядка, что и матрица А. Матрица А -1 имеет те же размеры, что и матрица А.

Обратная матрица

Если существуют квадратные матрицы Х и А, удовлетворяющие условию: X × A = A × X = E , где Е — единичная матрица того же самого порядка, то матрица Х называется обратной матрицей к матрице А и обозначается А -1 . Всякая невырожденная матрица имеет обратную матрицу и притом только одну, т. е. для того чтобы квадратная матрица A имела обратную матрицу, необходимо и достаточно, чтобы её определитель был отличен от нуля.

Читайте также:  Как написать красивую надпись на бумаге

Для получения обратной матрицы используют формулу:

, где Мji дополнительный минор элемента аji матрицы А.

5. Ранг матрицы. Вычисление ранга с помощью элементарных преобразований.

Рассмотрим прямоугольную матрицу mхn. Выделим в этой матрице какие-нибудь k строк и k столбцов, 1 £ k £ min (m, n) . Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка. Все такие определители называются минорами матрицы. Например, для матрицы можно составить миноры второго порядкаи миноры первого порядка 1, 0, -1, 2, 4, 3.

Определение.Рангом матрицы называется наивысший порядок отличного от нуля минора этой матрицы. Обозначают ранг матрицы r (A).

В приведенном примере ранг матрицы равен двум, так как, например, минор

Ранг матрицы удобно вычислять методом элементарных преобразований. К элементарным преобразованиям относят следующие:

1) перестановки строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

Эти преобразования не меняют ранга матрицы, так как известно, что 1) при перестановке строк определитель меняет знак и, если он не был равен нулю, то уже и не станет; 2) при умножении строки определителя на число, не равное нулю, определитель умножается на это число; 3) третье элементарное преобразование вообще не изменяет определитель. Таким образом, производя над матрицей элементарные преобразования, можно получить матрицу, для которой легко вычислить ранг ее и, следовательно, исходной матрицы.

Определение. Матрица , полученная из матрицыпри помощи элементарных преобразований, называется эквивалентной и обозначаетсяА В.

Теорема.Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.

Матрица называется ступенчатой если она имеет вид:

, где ,,.

Очевидно, что ранг ступенчатой матрицы равен числу ненулевых строк , т.к. имеется минор -го порядка, не равный нулю:

.

Пример.Определить ранг матрицы с помощью элементарных преобразований.

.

Ранг матрицы равен количеству ненулевых строк, т.е. .

Минор (математич.) — Минор (от лат. minor меньший) k го порядка матрицы, определитель, составленный из элементов, стоящих на пересечении произвольно выделенных k строк и k столбцов матрицы. Так, определитель есть М. 2 го порядка матрицы составленный из ее элементов,… … Большая советская энциклопедия

МИНОР — определитель, составленный из элементов, состоящих на пересечении произвольно выделенных k строк и k столбцов данной матрицы или определителя … Большой Энциклопедический словарь

МИНОР (в математике) — МИНОР, определитель, составленный из элементов, состоящих на пересечении произвольно выделенных k строк и k столбцов данной матрицы или определителя … Энциклопедический словарь

МИНОР — 1. М. элемента aij определителя А есть определитель, полученный из А после вычеркивания элементов i ой строки и j гo столбца. М. m го порядка матрицы А ||aij|| есть определитель m го порядка, составленный из m2 элементов, стоящих на пересечении… … Геологическая энциклопедия

Минор — [minor] см. Определитель матрицы … Экономико-математический словарь

Минор (линейная алгебра) — У этого термина существуют и другие значения, см. Минор (значения). Минор матрицы ― определитель такой квадратной матрицы порядка (который называется также порядком этого минора), элементы которой стоят в матрице на пересечении строк с номерами … Википедия

Минор — I Минор Лазарь Соломонович [17(29).12.1855 1942], советский невропатолог, заслуженный деятель науки РСФСР (1927). В 1879 окончил медицинский факультет Московского университета, работал у А. И. Бабухина, А. Я. Кожевникова. В 1910 17… … Большая советская энциклопедия

минор — а; м. [от итал. minore меньший]. 1. Музыкальный лад, звуки которого образуют аккорд, построенный на малой трапеции (характеризуется звуковой окраской, связанной с настроениями грусти, скорби; противоп.: мажор). Играть в миноре. 2. Разг. О… … Энциклопедический словарь

МИНОР — порядка к определитель матрицы, элементы к рой стоят в данной прямоугольной матрице на пересечении кразных столбцов и кразных строк. Если номера отмеченных строк совпадают с номерами отмеченных столбцов, то М. наз. главным, а есля отмечены первые … Математическая энциклопедия

МИНОР — определитель, составленный из элементов, стоящих на пересечении произвольно выделенных k строк и k столбцов данной матрицы или определителя … Естествознание. Энциклопедический словарь

Ссылка на основную публикацию
Что значит else в паскале
Следует быть внимательными при использовании вложенных операторов if. Предпочтительнее пользоваться схемой else-if (т.е. вкладывать во внешнюю ветку else), а не...
Чем открыть файл html на компьютере
Автор: Юрий Белоусов · 21.11.2018 Каждый вебмастер знает, что такое HTML: это – язык гипертекстовой разметки, с помощью которой создается...
Чем открыть файл mtf тесты
�������� (����.): ���� ����� MyTest �������� (���.): ���� ����� MyTest ��������: MTF ��� ���� ����� MyTest ������������ ����� ������ �����,...
Что значит в магазинах айфон как новый
Нас часто спрашивают, как определить состояние iPhone. Особенно актуально это при покупке смартфона на вторичном рынке, где чуть ли не...
Adblock detector